235 research outputs found

    Lower seroreactivity to European than to North American H3N2 swine influenza viruses in humans, Luxembourg, 2010

    Get PDF
    Seroreactivity to H3N2 swine influenza viruses (SIVs) was evaluated in serum samples collected from 843 people aged 0 to 100 years in 2010 in Luxembourg. Sera were analysed by haemagglutination inhibition (HI) and virus neutralisation (VN) assays targeting a European H3N2 SIV, a North American H3N2 variant of swine origin (H3N2v) and human seasonal H3N2 viruses isolated in 1975, 1995 and 2005. HI antibodies (titre ≥ 10) against European H3N2 SIV were almost exclusively detected in those born before 1990, of whom 70% were seropositive. HI antibodies against H3N2v were predominantly found in those born before 2000, with 86% seropositive. Titres against the North American H3N2v were higher than against the European H3N2 SIV. VN patterns were similar, but with higher rates and titres. We also demonstrated lower seroreactivity to European H3N2 SIV than to North American H3N2v virus. Finally, we found a strong correlation between HI titres against the European H3N2 SIV and H3N2v and their respective human ancestors, A/Victoria/3/75 and A/Nanchang/933/95. This finding and the minimal contacts between humans and pigs in Luxembourg suggest that anti-SIV antibodies in human serum samples reflect serological cross-reactivity with historical human H3N2 viruses. Our findings help assess the pandemic risk of H3N2 SIV

    Absolute differential positronium-formation cross sections

    Get PDF
    The first absolute experimental determinations of the differential cross-sections for the formation of ground-state positronium are presented for He, Ar, H2 and CO2 near 0â—‹. Results are compared with available theories. The ratio of the differential and integrated cross-sections for the targets exposes the higher propensity for forward-emission of positronium formed from He and H2

    The HERMES Solar Atlas and the spectroscopic analysis of the seismic solar analogue KIC3241581

    Get PDF
    Solar-analog stars provide an excellent opportunity to study the Sun's evolution, i.e. the changes with time in stellar structure, activity, or rotation for solar-like stars. The unparalleled photometric data from the NASA space telescope Kepler allows us to study and characterise solar-like stars through asteroseismology. We aim to spectroscopically investigate the fundamental parameter and chromospheric activity of solar analogues and twins, based on observations obtained with the HERMES spectrograph and combine them with asteroseismology. Therefore, we need to build a solar atlas for the spectrograph, to provide accurate calibrations of the spectroscopically determined abundances of solar and late type stars observed with this instrument and thus perform differential spectral comparisons. We acquire high-resolution and high signal-to-noise spectroscopy to construct three solar reference spectra by observing the reflected light of Vesta and Victoria asteroids and Europa (100<S/N<450) with the \Hermes spectrograph. We then observe the Kepler solar analog KIC3241581 (S/N~170). We constructed three solar spectrum atlases from 385 to 900 nm obtained with the Hermes spectrograph from observations of two bright asteroids and Europa. A comparison between our solar spectra atlas to the Kurucz and HARPS solar spectrum shows an excellent agreement. KIC3241581 was found to be a long-periodic binary system. The fundamental parameter for the stellar primary component are Teff=5689+/-11K, logg=4.385+/-0.005, [Fe/H]=+0.22+/-0.01, being in agreement with the published global seismic values confirming its status of solar analogue. KIC 3241581 is a metal rich solar analogue with a solar-like activity level in a binary system of unknown period. The chromospheric activity level is compatible to the solar magnetic activity.Comment: 12 pages, 8 figures, accepted for publication in A&

    Gravity-mode period spacings as seismic diagnostic for a sample of gamma Doradus stars from Kepler space photometry and high-resolution ground-based spectroscopy

    Get PDF
    Gamma Doradus stars (hereafter gamma Dor stars) are gravity-mode pulsators of spectral type A or F. Such modes probe the deep stellar interior, offering a detailed fingerprint of their structure. Four-year high-precision space-based Kepler photometry of gamma Dor stars has become available, allowing us to study these stars with unprecedented detail. We selected, analysed, and characterized a sample of 67 gamma Dor stars for which we have Kepler observations available. For all the targets in the sample we assembled high-resolution spectroscopy to confirm their F-type nature. We found fourteen binaries, among which four single-lined binaries, five double-lined binaries, two triple systems and three binaries with no detected radial velocity variations. We estimated the orbital parameters whenever possible. For the single stars and the single-lined binaries, fundamental parameter values were determined from spectroscopy. We searched for period spacing patterns in the photometric data and identified this diagnostic for 50 of the stars in the sample, 46 of which are single stars or single-lined binaries. We found a strong correlation between the spectroscopic vsini and the period spacing values, confirming the influence of rotation on gamma Dor-type pulsations as predicted by theory. We also found relations between the dominant g-mode frequency, the longest pulsation period detected in series of prograde modes, vsini, and log Teff.Comment: 61 pages, 61 figures, 6 tables, accepted for publication in ApJ

    Detecting non-uniform period spacings in the Kepler photometry of gamma Doradus stars: methodology and case studies

    Full text link
    Context. The analysis of stellar oscillations is one of the most reliable ways to probe stellar interiors. Recent space missions such as Kepler have provided us with an opportunity to study these oscillations with unprecedented detail. For many multi-periodic pulsators such as {\gamma} Doradus stars, this led to the detection of dozens to hundreds of oscillation frequencies that could not be found from ground-based observations. Aims. We aim to detect non-uniform period spacings in the Fourier spectra of a sample of {\gamma} Doradus stars observed by Kepler. Such detection is complicated by both the large number of significant frequencies in the space photometry and by overlapping non-equidistant rotationally split multiplets. Methods. Guided by theoretical properties of gravity-mode oscillation of {\gamma} Doradus stars, we developed a period-spacing detection method and applied it to Kepler observations of a few stars, after having tested the performance from simulations. Results. The application of the technique resulted in the clear detection of non-uniform period spacing series for three out of the five treated Kepler targets. Disadvantages of the technique are also discussed, and include the disability to distinguish between different values of the spherical degree and azimuthal order of the oscillation modes without additional theoretical modelling. Conclusions. Despite the shortcomings, the method is shown to allow solid detections of period spacings for {\gamma} Doradus stars, which will allow future asteroseismic analyses of these stars.Comment: 10 pages, 13 figures, 2 tables. Accepted for publication in Astronomy & Astrophysic

    Swine Influenza Virus Antibodies in Humans, Western Europe, 2009

    Get PDF
    Serologic studies for swine influenza viruses (SIVs) in humans with occupational exposure to swine have been reported from the Americas but not from Europe. We compared levels of neutralizing antibodies against 3 influenza viruses—pandemic (H1N1) 2009, an avian-like enzootic subtype H1N1 SIV, and a 2007–08 seasonal subtype H1N1—in 211 persons with swine contact and 224 matched controls in Luxembourg. Persons whose profession involved contact with swine had more neutralizing antibodies against SIV and pandemic (H1N1) 2009 virus than did the controls. Controls also had antibodies against these viruses although exposure to them was unlikely. Antibodies against SIV and pandemic (H1N1) 2009 virus correlated with each other but not with seasonal subtype H1N1 virus. Sequential exposure to variants of seasonal influenza (H1N1) viruses may have increased chances for serologic cross-reactivity with antigenically distinct viruses. Further studies are needed to determine the extent to which serologic responses correlate with infection

    The CubeSpec space mission: Asteroseismology of massive stars from time-series optical spectroscopy

    Full text link
    The ESA/KU Leuven CubeSpec mission is specifically designed to provide low-cost space-based high-resolution optical spectroscopy. Here we highlight the science requirements and capabilities of CubeSpec. The primary science goal is to perform pulsation mode identification from spectroscopic line profile variability and empower asteroseismology of massive stars.Comment: Authors' submitted version of poster proceedings paper for IAU Symposium 361: Massive Stars Near and Far, held in Ballyconnell, Ireland, 9-13 May 202

    Many-body theory of gamma spectra from positron-atom annihilation

    Full text link
    A many-body theory approach to the calculation of gamma spectra of positron annihilation on many-electron atoms is developed. We evaluate the first-order correlation correction to the annihilation vertex and perform numerical calculations for the noble gas atoms. Extrapolation with respect to the maximal orbital momentum of the intermediate electron and positron states is used to achieve convergence. The inclusion of correlation corrections improves agreement with experimental gamma spectra.Comment: 25 pages, 9 figures, submitted to J. Phys.
    • …
    corecore