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Abstract. Using the two-channel Kohn and inverse Kohn variational methods, we

investigate ground-state positronium (Ps) formation in positron-hydrogen collisions

in the Ore gap. We find two zeros in the Ps-formation scattering amplitude fPs

and corresponding deep minima in the Ps-formation differential cross section, and

we determine their positions accurately. Due to azimuthal symmetry, each zero in fPs

is part of separate circular rings of zeros for an azimuthal angle range of zero to 2π.

We study the velocity field associated with fPs in which we treat the magnitude of

the momentum of the incident positron and the angle of the outgoing positronium as

variables, and we refer to this velocity field as the extended velocity field. We show

that it has two vortices that are connected with the zeros in fPs, and that it rotates

in opposite directions around the two zeros in fPs. Previously, vortices in the velocity

field associated with the transition matrix element have provided an explanation for

deep minima in differential cross sections for direct ionization. With the introduction

of the extended velocity field, our work shows that vortices can occur also for charge

exchange.
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Deep minima and vortices for positronium formation 2

1. Introduction

In atomic physics one is interested in structures in differential cross sections. Currently,

there is an interest in deep minima in the triply differential cross section (TDCS) for

ionization by electron or positron impact and in their interpretation in terms of vortices.

Recently, Macek et al. [1] provided an explanation for a deep minimum in the triply

differential cross section (TDCS) measurements of electron-helium ionization [2] in terms

of a vortex. Their work led to interest in vortices for ionization by electron and positron

impact. For instance, Ward and Macek [3] examined K-shell ionization of a model carbon

atom by fast electron impact using the Coulomb-Born approximation and noted a vortex

in the velocity field associated with the transition matrix element. Also, Navarrete et

al. [4] and Navarrete and Barrachina [5, 6] found deep minima in the fully differential

cross section for positron-impact ionization of atomic hydrogen. They established that

the deep minima are due to zeros in the transition matrix element and that the zeros are

related to vortices in the generalized velocity field associated with this element [5, 6, 7].

Navarrete and Barrachina [5, 6, 7] found a pair of zeros, and they noticed that the

velocity field rotates in opposite directions around the two zeros.

Vortices have also been discussed for ionization by other projectiles. Macek et al.

[8] performed a time-dependent calculation of proton-hydrogen collisions and addressed

vortices associated with zeros in a single-particle wave function and with zeros in the

momentum distribution of the ionized electron. They discussed the transfer of angular

momentum for the collision. Macek et al. [8] and Macek [9] discussed ring vortices

[10] and Macek [9] noted that there may be ring vortices associated with the first-Born

approximation treatment of high-velocity collisions. Recently, Ovchinnikov et al. [11]

considered a time-dependent wave function that was a superposition of two states, 1s

and 2p+, of atomic hydrogen, and showed rotation of the probability density distribution

around a zero. Citations of papers on vortices for ionization by ions, antiprotons and

photons are given in [3]. Very recently, Ngoko Djiokap et al. [12, 13] have studied

electron vortices in ionization by circularly polarized UV pulses and Larionov et al.

[14] have considered vortices for ionization of a hydrogen-like atom by an ultrashort

electromagnetic pulse. We note that McCullough et al. [15] found a vortex for the

collinear H + H2 chemical exchange reaction [16], and Kuppermann et al. [17] discussed

vortices in stream lines plots for this reaction.

Dirac [18] showed that quantized vortices can occur around nodes of wave functions

where the associated field would be a quantum probability field. Hirschfelder et al.

[16, 19], using Madelung’s [20] hydrodynamical interpretation of quantum mechanics,

connected vortices associated with single-particle wave functions to those in fluid

dynamics (see Ghosh and Deb [21]). The hydrodynamic formulation of wave mechanics

considers the flow of a quantum mechanical probability, and the derivation depends

on the wave function being single-valued and continuous [10, 16, 19, 20]. (Wallace

[22] presents carefully the case that a quantization condition should be included with

Madelung’s hydrodynamic equation to obtain the Schrödinger equation. Reference [6]

Page 2 of 20AUTHOR SUBMITTED MANUSCRIPT - JPHYSB-105348.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Deep minima and vortices for positronium formation 3

notes that there is a controversy regarding the equivalence of these equations [6, 22, 23].)

The dynamics of vortices in wave functions have been studied in detail by Bialynicki-

Birula et al. [10], who used the quantum hydrodynamic approach of Madelung [20] and

considered both unbound vortex lines and vortex rings. Importantly, they related the

vortices present in the velocity field to zeros in a single-particle complex wave function

that is a solution to the time-dependent Schrödinger equation. Since the scattering wave

function in coordinate space at asymptotic times can be connected to the momentum-

space wave function through the imaging theorem [4, 5, 6, 7, 24, 25, 26, 27, 28], zeros

in the coordinate-space wave function can be mapped as zeros in the momentum-space

wave function. Therefore, vortices in the velocity field associated with zeros in the

coordinate-space scattering wave function at asymptotic times are evidenced as zeros in

the momentum distribution, which is a quantity that may be experimentally assessable.

In this paper, we present two isolated first-order zeros in Ps-formation scattering

amplitude fPs, and two corresponding deep minima in the Ps-formation differential cross

section (DCS), for positron-hydrogen collisions in the Ore gap. We connect the zeros to

vortices in an extended velocity field associated with fPs when both k and θ in fPs are

allowed to vary. We determine fPs using the two-channel K-matrices that we calculate

using the Kohn and inverse Kohn variational methods, which are nonperturbative

methods and are known to be capable of providing very accurate results if flexible

trial functions are used [29, 30]. The Ore gap for positron-atom collisions is the energy

region between the threshold for ground-state Ps formation and the first excitation

threshold of the target atom, where the only channels open are elastic scattering and

Ps(1s) formation (ignoring annihilation) [29, 31]. For positron-hydrogen collisions, the

energy range of the incident positron for the Ore gap is 6.8 to 10.2 eV (k = 0.7071

to 0.8660 a.u.). While no experimental measurements have been made of the absolute

Ps-formation DCS for positron collisions with atomic hydrogen, they have recently been

obtained for He, Ar, H2 and CO2 near the forward direction [32]. The work that we

present in this paper may be of interest to the atomic physics community due to the

studies of structures in differential cross sections, the recent experimental measurements

of the Ps-formation DCS [32] and the recent literature on vortices for atomic ionization

[1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14].

The advantage of obtaining zeros in the scattering amplitude for charge exchange

rather than for atomic ionization is that there are fewer degrees of freedom. Ground-

state Ps formation in positron collisions from ground-state atomic hydrogen is an

example of a charge exchange. For this process, when one takes the z-axis to be parallel

to the direction of the incident positron, the scattering amplitude for this process, fPs,

depends only on the physical quantities k and θ, where k is the momentum of the

incident positron and θ is the angle of the outgoing Ps.

The theoretical existence of narrow minima in the DCS for Ps formation in positron-

hydrogen collisions has been presented by Drachman et al. [33]. They calculated the

Ps-formation DCS using the two-state coupled static approximation with correlation

[34, 35] for the first two partial waves and the Born approximation for the higher
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Deep minima and vortices for positronium formation 4

partial waves. Mandal et al. [36] applied the distorted-wave approximation (DWA), the

distorted-wave polarization approximation (DWPA), and the first Born approximation

(FBA) to Ps formation in positron-hydrogen collisions. They obtained a minimum in

the DCS that corresponds in energy, 10.2 eV, to the second minimum that Drachman

et al. [33] obtained, but the angles determined with the various approximations are

different. The DWA and FBA are not expected to be reliable at such a low energy, and

one should not expect the DWPA to provide accurate results at low energies. Using the

inverse Kohn and Kohn variational methods, we provide an accurate determination of

the positions of deep minima in the Ps-formation DCS.

The outline of our paper is as follows. In §2, we present the theory of the scattering

calculations for Ps formation in positron-hydrogen collisions in the Ore gap, where we

give an outline of the Kohn variational method and the s-wave trial function. In §3, we

discuss the numerical investigation of the K-matrices and we present our results in §4.

Specifically, in §4.1 we give our results of the deep minima in the Ps-formation DCS and

the positions of the zeros in fPs, whereas in §4.2 we define the velocity field associated

with fPs and discuss the extended velocity field vext, including vortices associated with

this field. We summarize our findings in §5. In Appendix A, we review the velocity field

v associated with the transition amplitude for ionization and we give a similar expression

for the velocity field v that is associated with Ps-formation scattering amplitude fPs.

Finally, in Appendix B, we relate first-order zeros in fPs to vortices in vext.

We use atomic units throughout unless explicitly stated otherwise, and we quote

the angle θ of the outgoing Ps in degrees.

2. Theory of the scattering calculations

We use the Kohn and inverse Kohn variational methods to evaluate K-matrices for

ground-state Ps formation in positron-hydrogen collisions in the Ore gap. The Kohn

variational method is described in detail in the papers [29, 30, 37, 38]. Here, we present

an outline of the Kohn variational method and the form of the wave function specifically

for s-wave scattering. The two-channel stationary Kohn functional from which the

variational values of the K-matrix elements, Kv
ij, can be determined using the trial

values of the K-matrix elements, Kt
ij, and the two components of the trial function (Ψt

1

and Ψt
2) has the form[

Kv
11 Kv

12

Kv
21 Kv

22

]
=

[
Kt

11 Kt
12

Kt
21 Kt

22

]
−

[
(Ψt

1, LΨt
1) (Ψt

1, LΨt
2)

(Ψt
2, LΨt

1) (Ψt
2, LΨt

2)

]
, (1)

where L = 2(H − E) in which H is the total Hamiltonian of the positron-hydrogen

system and E is the corresponding total energy. The functional is for all partial waves

but, for simplicity of notation, we omit the partial wave ` on the K-matrix elements and

on the components of the trial wave function. For s-wave scattering, following [29, 30],

we choose for the two components of the trial product-form wave function to have the
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Deep minima and vortices for positronium formation 5

form:

Ψt
1 = Y0,0(r̂1)φH(r2)

√
k
{
j0(kr1)−Kt

11n0(kr1)fsh(r1)
}

− Y0,0(ρ̂)φPs(r12)
√

2κKt
21n0(κρ)fsh(ρ) + φH(r2)

N∑
i=1

ciφi

Ψt
2 = Y0,0(ρ̂)φPs(r12)

√
2κ
{
j0(κρ)−Kt

22n0(κρ)fsh(ρ)
}

− Y0,0(r̂1)φH(r2)
√
kKt

12n0(kr1)fsh(r1) + φH(r2)
N∑
j=1

cjφj , (2)

where φH(r2) = π−1/2e−r2 and φPs(r12) = (8π)−1/2e−r12/2 are the ground-state wave

functions of hydrogen and positronium, respectively. The position vectors of the positron

and the electron with respect to the proton (which is treated as infinitely massive) are

r1 and r2, respectively, and r12 = |r1−r2|. In equation (2), ρ = (r1+r2)/2 is the center

of mass position vector for the positronium with respect to the proton. The momenta

of the incident positron and the outgoing Ps are given by k and κ, respectively. The

magnitude of these momenta are related through energy conservation according to

E =
k2

2
− 1

2
=

κ2

2MPs

− 1

4
, (3)

where MPs = 2 a.u., the mass of the outgoing Ps atom. The Hylleraas-type short-range

terms φj in equation (2) are given by

φi = e−(αr1+βr2+γr12)rki1 r
li
2 r

mi
12 , (4)

where α, β and γ are nonlinear parameters, and ki, li and mi are nonnegative integer

powers. (We choose α > 0, γ > 0, and β > −1.) The coefficients ci (i = 1 → N) in

equation (2) are linear variational parameters. We obtain the number of terms N in

each sum in equation (2) by selecting the value of ω, where ω is a nonnegative integer

given by ki + li +mi ≤ ω [29, 30]. For ω = 6, 7, 8, 9 and 10, N = 84, 120, 165, 220, and

286, respectively. The shielding functions fsh(ρ) and fsh(r1) ensure that the singularities

at the origin in the spherical Neumann functions n0(κρ) and n0(kr1), respectively, are

removed. A functional similar to equation (1) gives rise to the inverse Kohn variational

method [29, 38], which we primarily use as we find empirically that it is less affected by

the Schwartz singularities [39, 40]. We do compare the K-matrices and the positions of

the zeros in fPs that we obtain using both variational methods to gauge the accuracy

of these results.

If one takes the z-axis to be parallel to the momentum of the incident positron,

then, due to azimuthal symmetry about the z-axis, the scattering amplitude for Ps(1s)

formation fPs can be expanded in terms of Legendre polynomials according to [41]

fPs(k, θ) =

√
MPs

kκ

∑
`

(2`+ 1)T `12 P`(cos θ) , (5)

where θ is the angle of the outgoing Ps. T `12 is the `th partial-wave T-matrix element for

Ps formation which can be determined from the `th partial-wave K-matrix K` according
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Deep minima and vortices for positronium formation 6

to [41]

T `12 =
[ K`

1− iK`

]
12
. (6)

The azimuthal symmetry of the scattering means that fPs depends only on two physical

quantities, which may be chosen to be (k, θ), or (κz, κx), where κz and κx are the z-

and x-components of κ , respectively, and the x-axis is in the scattering plane of k and

κ and to the left of the z-axis. The Ps-formation DCS is related to fPs by

dσPs
dΩ

=
κ

MPsk
|fPs(k, θ)|2 (7)

with the ratio of ortho-Ps to para-Ps being 3:1 [37].

3. Numerical investigation of the variational K-matrices

The present calculations for the K-matrices extend the variational calculations of

Humberston et al. [30] for the s-, p- and d−waves to higher partial waves. An error in

the d-wave calculation of [30] had recently been corrected as reported in Woods et al.

[38] and Van Reeth et al. [42]. We calculate the f -wave K-matrix elements using sets of

short-range terms in the trial wave function with the three units of angular momentum

on either the positron or the electron and a set in which one unit is associated with the

electron and two with the positron [29, 30, 37, 43]. Using only short-range terms with all

angular momentum on either the positron or the electron we also calculate three higher

partial waves (the g-, h- and i-waves). We restrict the flexibility of the wave function

for these partial waves since their contributions to fPs and to the corresponding DCS

are not expected to be very large in the energy range of the Ore gap. We think that

the inclusion of all possible sets of short-range terms in which the angular momentum

is shared between the positron and the electron, following the procedure of Schwartz

[43], is not warranted given the significant amount of extra work it would involve. For

each symmetry that we consider in the trial function for a particular partial wave, we

use the same number of short-range terms.

Due to near-linear dependence between terms in the wave function we encounter

numerical issues with the evaluation of the higher partial-waves contributions which

restrict the number of short-range terms we can include before we get a significant

number of Schwartz singularities [39, 40]. With our selection of the ω values for the

different partial waves, we obtain in the vicinity of the zeros in fPs inverse Kohn matrix

elements that are smooth functions of k. We compute the K-matrices on a very fine

grid in k in the vicinity of each of the two zeros in fPs. In the vicinity of the first

zero, we include the first four partial waves and consider the ω values 10, 9, 8, and 8

for ` = 0, 1, 2 and 3, respectively. However, in the vicinity of the second zero, and for

calculations over a wider range of k in the Ore gap, we include the first seven partial

waves and consider the ω values of 9, 9, 8, 8, 7, 7, and 7 for ` = 0, 1, 2, 3, 4, 5 and 6,

respectively.
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Deep minima and vortices for positronium formation 7

Since the K-matrices from the inverse Kohn method are generally more stable than

those from the Kohn method, we use the inverse Kohn K-matrices for the results that

we give in section 4, except for the comparison of the positions of the zeros that we

obtain using the two methods. We find that at the positions of the two zeros in fPs, for

the first four partial waves the Kohn and inverse Kohn K-matrices agree very well; their

difference is less than 0.63%. At the position of the second zero, the agreement between

the K-matrices from the two methods is not as good for the higher partial waves as for

the lower partial waves. For the g- and h-waves, we find that the difference is about

6% or less, and for the i-wave that the difference is within 14%. However, these higher

partial waves contribute less significantly to the values of the positions of the zeros in

fPs than do the lower partial waves together.

We estimate uncertainties in the inverse Kohn K-matrix elements by computing

the percentage ratio Rij = (Kij(ω) − Kij(ω − 1))/Kij(ω − 1) × 100%, where Kij(ω)

are the K-matrix elements at a particular ω value that we use in the calculation. We

compute this percentage ratio at the positions of the two zeros. For the ` = 0, 1 and

2 partial waves, this ratio is within 2% except at the position of the first zero where

for the d-wave the ratio for K12 is within 3% and for K22 is within 18%. For the ` = 3

partial wave, we find that for all matrix elements the ratio is within 2% except at the

position of the second zero where the ratio for K22 is about 50%. In general, we do not

achieve the same accuracy and confidence in the K-matrices for the ` > 3 partial wave

as for the lower partial waves.

4. Results

4.1. Deep minima in the Ps-formation differential cross section (DCS) and positions

of the zeros in the Ps-formation scattering amplitude fPs

In figure 1, we show the Ps-formation DCS and the nodal lines of Re[fPs] = 0 and

Im[fPs] = 0 as functions of k and θ. The nodal line of Re[fPs] follows a region where the

Ps-formation DCS is very small, starting rapidly from threshold up to a maximum and

then decreasing slowly with increasing k. The nodal line of Im[fPs] intercepts the nodal

line of Re[fPs] at two points at which fPs is zero. The first zero of fPs lies very close

to threshold, and the second one lies in the region where the nodal line of Re[fPs] does

not vary much with θ. A three-dimensional plot of the common logarithm of the Ps-

formation DCS, figure 2 (a), reveals two deep and narrow minima, one near threshold at

k = 0.7095 and the other at k = 0.8124. These minima can be seen more closely in the

three-dimensional plots of figures 2 (b) and (c), respectively. We show a two-dimensional

plot of the logarithm of the Ps-formation DCS as a function of θ for k = 0.7095 and

0.8124 in figures 3 (a) and (b), respectively. In figure 3 (a) the deep minimum occurs

at 70.8◦, while in figure 3 (b) it occurs at a smaller angle of 52.3◦.

Drachman et al. [33] performed a pioneering calculation of the Ps-formation DCS

for positron-hydrogen collisions. For the first two partial waves they used the K-matrices
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Deep minima and vortices for positronium formation 8

from the coupled static approximation with correlation [34, 35], and for the higher

partial waves they used the Born approximation. They obtained narrow minima in the

Ps-formation DCS, one at (k0 = 0.80, θ0 = 57◦) and another at (k0 = 0.866, θ0 = 51◦),

where k = 0.866 is the first excitation threshold of H(n = 2). The position of the

second deep minimum that we obtain using the inverse Kohn variational method is

comparable to the position of the first minimum that Drachman et al. [33] obtained

using a simpler approximation, although the minimum we obtain is orders of magnitude

deeper. Drachman et al. [33] did not report the first deep minimum that we obtain

using a fine mesh in k.

0.72 0.74 0.76 0.78 0.80 0.82 0.84
0

20

40

60

80

100

k (a.u.)

θ
(d
eg

)

-4

-3

-2

-1

0

1

Figure 1: The common logarithm of the Ps-formation differential cross section,

log10[DCS], as a function of k and θ, for positron-hydrogen collisions over the most

of the Ore gap. The nodal lines of Re[fPs] = 0 and Im[fPs] = 0 are shown by the solid

blue line and the dashed black line, respectively.

In table 1, we compare the positions (k0, θ0) of the two zeros in fPs that we obtain

using the inverse Kohn and Kohn variational methods. For the position of the first zero,

the k0 values agree to four significant figures between the two methods and the θ0 values

differ by less than 0.15%. The difference between the two methods is slightly more for

the second zero: the k0 values differ by less than 0.2% and the θ0 values by less than

0.6%. Thus, we conclude that the values of the positions of the zeros determined by

the inverse Kohn and Kohn variational methods are close. In tables 2 and 3, and in the

figures, we use the inverse Kohn results.

Each zero in fPs given in table 1 is one of a pair of zeros that intersects the

κy = 0 plane. One zero of the pair occurs at the azimuthal angle of ϕ = 0, or at
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Deep minima and vortices for positronium formation 9

(a)

(b) (c)

Figure 2: The common logarithm of the Ps-formation differential cross section for

positron-hydrogen collisions as a function of k and θ. (a): shows two deep minima

in the k range of 0.708 to 0.83, (b): shows the first deep minimum and (c): shows the

second deep minimum.

Figure 3: The common logarithm of the Ps-formation differential cross section,

log10[DCS], as a function of θ for k = 0.7095 (a) and for k = 0.8124 (b).
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Deep minima and vortices for positronium formation 10

Table 1: Comparison of the positions (k0, θ0) of the zeros in fPs from the inverse Kohn

and Kohn K-matrices. (a): First zero, (b): Second zero.

Method k0 θ0 (deg.)

Inverse Kohn 0.7095 70.8

Kohn 0.7095 70.7

(a)

Method k0 θ0 (deg.)

Inverse Kohn 0.8124 52.3

Kohn 0.8110 52.6

(b)

κz = κz0, κx = κx0 (which is the zero given in the tables), while the other due to

azimuthal symmetry occurs at ϕ = π, or at κz = κz0, κx = −κx0. Due to azimuthal

symmetry each pair of zeros is associated with a circular ring of zeros in fPs, and in the

Ps-formation DCS, about the z-axis. Since we find two zeros in fPs, we conclude that

there are two distinct circular rings of zeros in the Ore gap.

Table 2 shows the convergence of the positions of the zeros in fPs with respect to

the maximum partial wave, `max, that we include in the truncated sum of fPs, equation

(5). Interestingly, we obtain the first zero with only the first two partial waves while

the first three partial waves are needed to obtain the second zero. For the first zero,

the position of the first zero stays stable to three significant figures in k0 and to two

significant figures in θ0 in increasing the number of partial waves from three to four.

For the second zero, we find that the k0 and θ0 values of the position of the second zero

are stable to two significant figures between including the first six partial waves and

including the first seven.

Ps(1s)-formation in positron-hydrogen collisions is a particularly simple process

for studying a zero in the scattering amplitude and corresponding DCS since only two

partial waves are necessary to obtain the first zero. In contrast, for fast electron-impact

ionization of inner-shell carbon, Ward and Macek [3] found that ` = 0, 1 and 2, m = 0

and ` = 0, m± 1 components of a multipole expansion of the transition matrix element

(about the momentum transfer axis) are all necessary to obtain a deep minimum in the

TDCS. Colgan et al. [44] found that in a time-dependent close-coupling calculation of

electron-impact ionization of helium for an incident electron energy of 64.6 eV at least

the first three partial waves are needed to obtain a minimum in the TDCS. For this

process, Feagin [45] expanded the scattering amplitude in cylindrical partial waves of

the electron pair about the vortex singularity. His findings are similar to ours for the

first zero in that, although the deep minimum in the cross section is obtained only with

the first two terms in an expansion of the scattering amplitude, the inclusion of the next

Page 10 of 20AUTHOR SUBMITTED MANUSCRIPT - JPHYSB-105348.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Deep minima and vortices for positronium formation 11

Table 2: Convergence of the k0 and θ0 positions of the first and second zeros in fPs with

respect to the maximum partial wave, `max in fPs. (a): First zero, (b): Second zero.

`max k0 θ0 (deg.)

1 0.7102 77.5

2 0.7096 71.2

3 0.7095 70.8

(a)

`max k0 θ0 (deg.)

2 0.779 65.7

3 0.797 56.6

4 0.8102 52.9

5 0.8138 52.0

6 0.8124 52.3

(b)

Table 3: Convergence of the (k0, θ0) positions of the first and second zeros in fPs with

respect to ω′ = ω − i, where i = 0, 1 and 2, and ω is related to the number of terms in

each sum in the components of a trial partial-wave scattering wave function in the full

calculation (see §3 and the last paragraph of §4.1). (a): First zero, (b): Second zero.

ω′ k0 θ0 (deg.)

ω 0.7095 70.8

ω - 1 0.7095 70.6

ω - 2 0.7095 71.1

(a)

ω′ k0 θ0 (deg.)

ω 0.8124 52.3

ω - 1 0.8112 52.2

ω- 2 0.8144 51.9

(b)

term significantly improves the results.

In table 3, we show the variation of the position (k0, θ0) of each zero in fPs with

respect to ω′ = ω − i, where i = 0, 1 and 2, and ω is related to the number of short-

range terms N in each sum in the components of a trial partial-wave scattering wave

function that we use in the full calculation (see §3 and equation (2) for the s-wave).

The value of ω that we use for each partial wave in the full calculation is given in

§3. Although the convergence of the position of the zeros with respect to ω′ is not
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Deep minima and vortices for positronium formation 12

monotonically convergent, these results indicate that the positions we obtain will not

change significantly if even a larger calculation is undertaken. In comparison with the

first zero, the second zero, for which we also include the g-, h- and i-waves, the differences

that we obtain by reducing the ω′ value by two are more significant.

4.2. Extended velocity field vext(κ, θ) associated with the Ps-formation scattering

amplitude fPs

In Appendix A we give the equation, equation (A.3), for the velocity field associated with

the transition amplitude for ionization that is from paper [26]. Using the terminology of

this equation we write the velocity field v associated with the Ps-formation scattering

amplitude fPs as

v =
1

MPs

Im∇κ[ln fPs] = − i

2MPs

(f ∗Ps∇κfPs − (∇κf ∗Ps)fPs
|fPs|2

)
. (8)

In the vicinity of each zero, we determine the velocity field v that is associated with fPs
for a fixed value of k, so that v(κ, θ) = vθ(κ, θ)θ̂, where vθ(κ, θ) is obtained from the θ̂

component of ∇κ. For the first zero, we find that for k slightly less than k0, vθ(κ, θ0) is

negative, while for k slightly greater than k0, it is positive. The opposite is the case for

the second zero.

We extend the velocity field by treating both κ and θ as variables in fPs (see

Appendix B), and we refer to this quantity as the extended velocity field vext, where

vext(κ, θ) = vθ(κ, θ)θ̂ + vκ(κ, θ)κ̂, and vκ(κ, θ) is obtained from the κ̂ component of

∇κ, respectively. In figure 4, we show a density plot of the common logarithm of

the Ps-formation DCS, the nodal lines of Re[fPs] and Im[fPs] and the unit vector

v̂ext = vext/|vext| for a (κz, κx) grid that includes both zeros in fPs, where we treat

κz and κx as independent variables. The two zeros in fPs and in the Ps-formation DCS

occur at the two intersections of the nodal lines of Re[fPs]=0 and Im[fPs]=0. Vortices

occur in vext, as can be seen from the rotation of this quantity around the two isolated

zeros.

For each zero in fPs, we compute fPs and the Ps-formation DCS for a small grid

in (κz, κx) that encloses the zero. In figures 5 (a) and (b), we show for the first and

second zeros, respectively, the nodal lines of fPs and the Ps-formation DCS. We obtain

the position of a zero, (κz0, κx0), in fPs(κz, κx) from an intersection of the nodal lines.

In the vicinity of a zero we can expand fPs about each zero according to

fPs,j(κz, κx) =

j∑
i=1

aij(κz − κz0)i + bij(κx − κx0)i . (9)

We substitute equation (9) into equation (8) to determine vext in the vicinity of a

zero. The term, i = j = 1 in equation (9), corresponds to the linear form equation

(B.1) with a11 = a, b11 = ab. We find that, for the linear fit, Im[b] = Im[b11/a11] is

positive for the first zero in fPs and negative for the second zero. We determine fPs,

vext, v̂ext = vext/|vext|, and the circulation Γ (see Appendix B), by taking j = `max in
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-6

-4

-2

0

Figure 4: Unit vector of the extended velocity field v̂ext (solid blue arrows) associated

with fPs, nodal lines of Re[fPs] (solid blue line) and Im[fPs] (dashed black line) and a

density plot of log10[DCS] for Ps formation in positron-hydrogen collisions for a (κz, κx)

grid that encloses both zeros in fPs. (There are some irregularities in the nodal lines

and some anomalies in v̂ext that may be due to singularities in the K-matrices in this

(κz, κx) grid.)

equation (9), where `max is the maximum ` value that we use in the Legendre series of

fPs in the vicinity of a zero (see §3). In figures 5 (a) and (b) we also show v̂ext for the

first and second zeros, respectively. The extended velocity field rotates about each zero

in fPs and the rotation is in opposite directions for the two zeros. Thus, vortices are

present in v̂ext that are associated with zeros in fPs.

To evaluate the circulation Γ about each zero, we use equations (8), (9) and (B.3).

We find that, as expected from Appendix B, Γ = 2π/MPs for the first zero, indicating

counterclockwise rotation, while Γ = −2π/MPs for the second zero, indicating clockwise

rotation. Thus, the sum of the two circulations is zero for the two zeros in fPs that

lie in the upper-half κz-κx (κx > 0) plane. The sum of 〈Ly〉A for a pair of zeros in

fPs in the same circular ring of zeros in fPs in the κz-κx plane is zero, where Ly is

the y-component of the angular momentum operator and A is a small area (circle or

square) whose center is at the zero (see Appendix B). Using the linear expansion of fPs,

equation (B.1), we find that 〈Ly〉A > 0 for the first zero and 〈Ly〉A < 0 for the second

zero, and interestingly, their sum is close to zero, even though these zeros are part of

two different circular rings of zeros.
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Figure 5: The common logarithm of the Ps-formation differential cross section

log10[DCS], as a function of (κz, κx) for the region about a zero. The intersection of

the nodal lines of Re[fPs] = 0 (solid blue line) and Im[fPs] = 0 (dashed black line) is at

the zero in fPs, (κz0, κx0). The solid blue arrows denote the unit vector of the extended

velocity field v̂ext, for the grid (κz, κx). The arc of constant κ0 =
√
κ2z0 + κ2x0 is shown

by the red dot-dashed line. (a): shows the region enclosing the first zero and (b): shows

the region enclosing the second zero.

5. Summary

Using inverse Kohn K-matrices, we have accurately evaluated the positions of two zeros

in the Ps(1s)-formation scattering amplitude fPs for positron-hydrogen collisions in the

Ore gap, and, thus, in the corresponding Ps-formation DCS. We have found that the

first zero is very close to the Ps(1s)-formation threshold while the second zero is at

k = 0.8124 a.u., which corresponds to an energy 2.18 eV above the threshold. The two

zeros in fPs are associated with two different circular rings of zeros in fPs and in the

Ps-formation DCS.

We have shown that there are vortices in the extended velocity field vext associated

with fPs, and that this velocity field rotates around the zeros in opposite directions for
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Deep minima and vortices for positronium formation 15

the two zeros. Thus, for the same charge of the incident projectile and for the same

atomic process, the extended velocity field can rotate in opposite directions around zeros

that are part of different circular rings. Previously, for positron-impact ionization, the

velocity field has been shown to rotate in opposite directions for a pair of zeros that

are part of the same vortex ring [5, 6, 7]. Our work shows importantly that vortices

occur for a charge-exchange atomic process, and are therefore not restricted in atomic

collisions to direct ionization (see §1).
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Appendix A. Velocity field for the transition amplitude for ionization and

the velocity field v associated with the Ps-formation scattering amplitude

fPs

Vortices have been studied in the standard velocity field v that is defined in terms of

the coordinate-space wave function Ψ(r, t) according to [3, 10, 16, 19]

v(r, t) =
i

2m

[Ψ(r, t)∇Ψ∗(r, t)−Ψ∗(r, t)∇Ψ(r, t)]

|Ψ(r, t)|2

=
1

m
Im∇[ln Ψ(r, t)] , (A.1)

where m is the mass of the particle, r is the position vector, t is time, and ∇ is the

gradient operator. The coordinate-space wave function at asymptotic times is related

to the momentum-space wave function through the imaging theorem [6, 26, 27, 28].

This theorem equates, within a phase factor and a normalization factor, the coordinate-

space wave function, with r set equal to the classical value vejt in the asymptotic limit

t→∞, to the momentum-space wave function Φ(kej, t), which is the Fourier transform

of Ψ(r, t) [6, 26, 27, 28]. Here, vej and kej are the velocity and momentum of an ejected

particle for an infinite massive target nucleus, respectively. For a single particle, the

imaging theorem can be written as

lim
t→∞

[|Ψ(r, t)|2dr]|r=vejt = |Φ(kej, t)|2dkej = P (kej)dkej , (A.2)

where P (kej) is the momentum distribution which is time independent [1, 6, 24, 25,

26, 27, 28]. The general derivation of the relationship between the coordinate-space
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and momentum-space wave functions, from which equation (A.2) can be obtained, was

derived by Kemble [24]. Recent derivations of the imaging theorem have been given by

Macek [26] and by Briggs and Feagin [27, 28]. The imaging theorem shows that vortices

in the velocity field associated with zeros in the coordinate-space wave function at

asymptotic times are also associated with zeros in the momentum-space wave function.

Macek [26] gave an expression for the velocity field v(ke) that is associated with

the transition amplitude akei, namely,

v(ke) = Im∇ke [ln akei] , (A.3)

where i specifies is the initial state of the electron, ke is the momentum of the ejected

electron whose mass is 1 a. u. and ∇ke is in the gradient operator in momentum space. If

akei has isolated first-order zeros, then vortices are present in the velocity field associated

with this amplitude.

Using the terminology of equation (A.3) and of papers [3, 4, 5, 6, 10], we write the

velocity field v associated with the Ps-formation amplitude fPs as

v =
1

MPs

Im∇κ[ln fPs] = − i

2MPs

(f ∗Ps∇κfPs − (∇κf ∗Ps)fPs
|fPs|2

)
. (A.4)

We also give this equation in §4.2 where it is labeled as equation (8).

Appendix B. The extended velocity field vext, the circulation Γ, and the

expectation value of the y-component of angular momentum 〈Ly〉A
associated with a linear expansion of fPs about a first-order zero

We evaluate a velocity field v(κ, θ) = vθ(κ, θ)θ̂ using equation (A.4) for fixed k (and

thus fixed κ), where we take the derivative with respect to θ only, and we briefly describe

this velocity field in the first paragraph of §4.2.

Below, and in §4.2 after the first paragraph, we consider for Ps formation an

extended velocity field vext in which we allow both the energy of the incident positron

beam and the angle of the outgoing Ps to vary in fPs, whose functional dependency on

these two physical quantities is known. The extended velocity field can be expressed as

vext(κ, θ) = vθ(κ, θ)θ̂ + vκ(κ, θ)κ̂, where vκ is from the κ derivative in ∇κ of equation

(A.4). Considering fPs to depend on two independent variables, κ and θ, or alternatively

κz and κx, allows for the corresponding velocity field vext to rotate around a zero similar

to the velocity field associated with the transition matrix element for ionization by

electron or positron impact for fixed incident momentum. [1, 3, 4, 5, 6, 26]. For both

processes, however, it is the deep minima in the differential cross section for a particular

incident energy that, in principle, is the quantity that is experimentally assessible.

One can expand fPs about an isolated first-order zero (κz0, κx0), and near the zero,

it has the linear form

fPs(κz, κx) ≈ a[(κz − κz0) + b(κx − κx0)] = a[κ′z + bκ′x] , (B.1)

where b is a complex number in which Im[b] 6= 0 [1, 3, 9, 10, 16, 46, 47, 48]. In equation

(B.1) (κ′z = κz−κz0 = κ′ cosα, κ′x = κx−κx0 = κ′ sinα) are the z′ and x′ components of
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Deep minima and vortices for positronium formation 17

the momentum of the outgoing Ps, κ′, with respect to a zero in fPs, so that κ′ = κ−κ0,

where κ0 is the momentum of Ps atom at the zero in fPs. The angle α is the angle

between the vector κ′ and the z′-axis.

We obtain equation (B.1) by using the multichannel effective range theory of Ross

and Shaw [49] for T `12 and then shifting the origin from the Ps-formation threshold

(κz = 0, κx = 0) to the position of an isolated first-order zero (κz0, κx0) in fPs. Feagin

[45] performed a similar expansion for the scattering amplitude for e−-He ionization

about the position of an isolated first-order zero in the scattering amplitude.

Substituting the linear expansion of fPs equation (B.1) into equation (A.4), one

obtains the dominant term vd of vext in the vicinity of the zero [48]:

vd =
(Im[b]

MPs

) (x̂κ′z − ẑκ′x)
κ′z

2 + |b|2κ′x2 + 2Re[b]κ′zκ
′
x

=
(Im[b]

MPs

) ŷ × κ̂′
κ′

1

cos2 α + |b|2 sin2 α + Re[b] sin 2α
, (B.2)

where κ′ = |κ′|, κ̂′ = κ′/κ′ and ŷ = ẑ × x̂. The direction of vd is orthogonal to κ̂′ and

its magnitude has a 1/κ′ singularity [48]. The extended velocity field in the vicinity of

the zero in fPs circulates about the zero, with a counterclockwise rotation if Im[b] > 0

and a clockwise rotation if Im[b] < 0. It is irrotational except at a zero in fPs, i.e., at

κ′ = 0 [10, 48].

Using vd given in equation (B.2) and taking a circular contour c of small radius

and counterclockwise orientation, enclosing the isolated first-order zero in fPs, one can

show that the circulation Γ is given by [3, 6, 10, 18, 48]

Γ =

∮
c

vext·d` = ± 2π

MPs

. (B.3)

This result is true for any counterclockwise contour of enclosing the isolated first-order

zero in fPs(κz, κx) provided there are no other zeros enclosed in the contour. The

plus sign corresponds to a counterclockwise rotation of vext, whereas the minus sign

corresponds to a clockwise rotation.

The non-zero circulation and the rotation of vext about the first-order zero in fPs
show that there is a vortex in vext. Using the form of fPs in the vicinity of the first-order

zero, equation (B.1), one obtains for the expectation value of the angular momentum

operator,

〈L〉A = ŷ〈Ly〉A = ŷ

∫
A
f ∗Ps(κz, κx)LyfPs(κz, κx)dκ

′
zdκ

′
x∫

A
|fPs(κz, κx)|2dκ′zdκ′x

≈ ŷ 2Im[b]

1 + |b|2
, (B.4)

where A is the area of a small square or of a small circle, both with center at the zero

in fPs [3, 9]. The expectation value 〈Ly〉A is nonzero since Im[b] 6= 0. It is positive for

Im[b] > 0, which is for counterclockwise rotation of vext, and negative for Im[b] < 0.
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