4,489 research outputs found

    Argumentative functions of dissociation in every-day discussions

    Get PDF

    AdS boundary conditions and the Topologically Massive Gravity/CFT correspondence

    Get PDF
    The AdS/CFT correspondence provides a new perspective on recurrent questions in General Relativity such as the allowed boundary conditions at infinity and the definition of gravitational conserved charges. Here we review the main insights obtained in this direction over the last decade and apply the new techniques to Topologically Massive Gravity. We show that this theory is dual to a non-unitary CFT for any value of its parameter mu and becomes a Logarithmic CFT at mu = 1.Comment: 10 pages, proceedings for XXV Max Born Symposium, talks given at Johns Hopkins workshop and Holographic Cosmology workshop at Perimeter Institute; v2: added reference

    MURPHY -- A scalable multiresolution framework for scientific computing on 3D block-structured collocated grids

    Full text link
    We present the derivation, implementation, and analysis of a multiresolution adaptive grid framework for numerical simulations on octree-based 3D block-structured collocated grids with distributed computational architectures. Our approach provides a consistent handling of non-lifted and lifted interpolating wavelets of arbitrary order demonstrated using second, fourth, and sixth order wavelets, combined with standard finite-difference based discretization operators. We first validate that the wavelet family used provides strict and explicit error control when coarsening the grid, and show that lifting wavelets increase the grid compression rate while conserving discrete moments across levels. Further, we demonstrate that high-order PDE discretization schemes combined with sufficiently high order wavelets retain the expected convergence order even at resolution jumps. We then simulate the advection of a scalar to analyze convergence for the temporal evolution of a PDE. The results shows that our wavelet-based refinement criterion is successful at controlling the overall error while the coarsening criterion is effective at retaining the relevant information on a compressed grid. Our software exploits a block-structured grid data structure for efficient multi-level operations, combined with a parallelization strategy that relies on a one-sided MPI-RMA communication approach with active PSCW synchronization. Using performance tests up to 16,384 cores, we demonstrate that this leads to a highly scalable performance. The associated code is available under a BSD-3 license at https://github.com/vanreeslab/murphy.Comment: submitted to SIAM Journal of Scientific Computing (SISC) on Dec 1

    Lattice Green's Functions for High Order Finite Difference Stencils

    Full text link
    Lattice Green's Functions (LGFs) are fundamental solutions to discretized linear operators, and as such they are a useful tool for solving discretized elliptic PDEs on domains that are unbounded in one or more directions. The majority of existing numerical solvers that make use of LGFs rely on a second-order discretization and operate on domains with free-space boundary conditions in all directions. Under these conditions, fast expansion methods are available that enable precomputation of 2D or 3D LGFs in linear time, avoiding the need for brute-force multi-dimensional quadrature of numerically unstable integrals. Here we focus on higher-order discretizations of the Laplace operator on domains with more general boundary conditions, by (1) providing an algorithm for fast and accurate evaluation of the LGFs associated with high-order dimension-split centered finite differences on unbounded domains, and (2) deriving closed-form expressions for the LGFs associated with both dimension-split and Mehrstellen discretizations on domains with one unbounded dimension. Through numerical experiments we demonstrate that these techniques provide LGF evaluations with near machine-precision accuracy, and that the resulting LGFs allow for numerically consistent solutions to high-order discretizations of the Poisson's equation on fully or partially unbounded 3D domains

    Cosmological Origin of the Stellar Velocity Dispersions in Massive Early-Type Galaxies

    Full text link
    We show that the observed upper bound on the line-of-sight velocity dispersion of the stars in an early-type galaxy, sigma<400km/s, may have a simple dynamical origin within the LCDM cosmological model, under two main hypotheses. The first is that most of the stars now in the luminous parts of a giant elliptical formed at redshift z>6. Subsequently, the stars behaved dynamically just as an additional component of the dark matter. The second hypothesis is that the mass distribution characteristic of a newly formed dark matter halo forgets such details of the initial conditions as the stellar "collisionless matter" that was added to the dense parts of earlier generations of halos. We also assume that the stellar velocity dispersion does not evolve much at z<6, because a massive host halo grows mainly by the addition of material at large radii well away from the stellar core of the galaxy. These assumptions lead to a predicted number density of ellipticals as a function of stellar velocity dispersion that is in promising agreement with the Sloan Digital Sky Survey data.Comment: ApJ, in press (2003); matches published versio

    Topological regluing of rational functions

    Full text link
    Regluing is a topological operation that helps to construct topological models for rational functions on the boundaries of certain hyperbolic components. It also has a holomorphic interpretation, with the flavor of infinite dimensional Thurston--Teichm\"uller theory. We will discuss a topological theory of regluing, and trace a direction in which a holomorphic theory can develop.Comment: 38 page

    C-start: optimal start of larval fish

    Get PDF
    We investigate the C-start escape response of larval fish by combining flow simulations using remeshed vortex methods with an evolutionary optimization. We test the hypothesis of the optimality of C-start of larval fish by simulations of larval-shaped, two- and three-dimensional self-propelled swimmers. We optimize for the distance travelled by the swimmer during its initial bout, bounding the shape deformation based on the larval mid-line curvature values observed experimentally. The best motions identified within these bounds are in good agreement with in vivo experiments and show that C-starts do indeed maximize escape distances. Furthermore we found that motions with curvatures beyond the ones experimentally observed for larval fish may result in even larger escape distances. We analyse the flow field and find that the effectiveness of the C-start escape relies on the ability of pronounced C-bent body configurations to trap and accelerate large volumes of fluid, which in turn correlates with large accelerations of the swimme
    corecore