28 research outputs found

    Hypertensive Disorders of Pregnancy are Associated with Differences in Maternal Serum Concentrations of Arachidonic Acid Metabolites

    Get PDF
    Background: Hypertensive disorders of pregnancy (HDP), including gestational hypertension, chronic hypertension, and preeclampsia, are a significant cause of maternal morbidity and mortality in the United States. Dysregulation of inflammation is thought to play a role in the development of HDP. Maternal diet has the potential to alter the risk of HDP by modulating inflammation. Arachidonic acid (AA) is a dietary polyunsaturated fatty acid which can be metabolized into both pro- and anti-inflammatory bioactive metabolites. Significance of Problem: HDP places women and their infants at risk for potentially severe pregnancy complications including placental abruption, embolism, end-organ failure, or death. Few treatments are currently available for HDP. Question: The objective of this study was to describe how maternal AA metabolites serum concentrations are associated with diagnosis of HDP. Experimental Design: Serum was collected from 121 pregnant women admitted to the labor and delivery unit at Nebraska Medical Center. Women were divided into normotensive or hypertensive groups based on definitions from the American College of Obstetricians and Gynecologists (ACOG). Concentrations of AA metabolites were measured using liquid chromatography-mass spectrometry. Descriptive statistics were generated, and Mann-Whitney U tests were used to compare metabolite concentrations between groups. Results: Women with HDP had significant higher serum concentrations of PGF2α (p=0.02) and 15-HETE (p=0.04), two metabolites with known inflammatory and vasoconstrictive properties. Women with HDP had significantly lower serum concentrations of 8(9)-DiHET (p=0.04), 11(12)-DiHET (p=0.04), and 14(15)-DiHET (p=0.001), which are all associated with vasodilation. Unexpectantly, hypertensive mothers also had lower serum concentrations of 5-HETE (p=0.02), which is associated with vasoconstriction. Conclusion: Overall, our study reveals that mothers diagnosed with HDP had significantly higher serum concentrations of vasoconstrictive AA metabolites and significantly lower serum concentrations of vasodilating AA metabolites compared to normotensive mothers. Future directions include analyzing differences in maternal metabolite profile separately for mothers with chronic hypertension, gestational hypertension, and preeclampsia compared to normotensive mothers. Results from these analyses will guide nutritional recommendations for women at risk of developing HDP.https://digitalcommons.unmc.edu/chri_forum/1062/thumbnail.jp

    Something Smells Fishy: How Lipid Mediators Impact the Maternal–Fetal Interface and Neonatal Development

    Get PDF
    Normal pregnancy relies on inflammation for implantation, placentation, and parturition, but uncontrolled inflammation can lead to poor maternal and infant outcomes. Maternal diet is one modifiable factor that can impact inflammation. Omega-3 and -6 fatty acids obtained through the diet are metabolized into bioactive compounds that effect inflammation. Recent evidence has shown that the downstream products of omega-3 and -6 fatty acids may influence physiology during pregnancy. In this review, the current knowledge relating to omega-3 and omega-6 metabolites during pregnancy will be summarized

    Omega-3 Fatty Acid-Derived Resolvin D2 Regulates Human Placental Vascular Smooth Muscle and Extravillous Trophoblast Activities

    Get PDF
    Omega-3 fatty acids are important to pregnancy and neonatal development and health. One mechanism by which omega-3 fatty acids exert their protective effects is through serving as substrates for the generation of specialized pro-resolving lipid mediators (SPM) that potently limit and resolve inflammatory processes. We recently identified that SPM levels are increased in maternal blood at delivery as compared to umbilical cord blood, suggesting the placenta as a potential site of action for maternal SPM. To explore this hypothesis, we obtained human placental samples and stained for the SPM resolvin D2 (RvD2) receptor GPR18 via immunohistochemistry. In so doing, we identified GPR18 expression in placental vascular smooth muscle and extravillous trophoblasts of the placental tissues. Using in vitro culturing, we confirmed expression of GPR18 in these cell types and further identified that stimulation with RvD2 led to significantly altered responsiveness (cytoskeletal changes and pro-inflammatory cytokine production) to lipopolysaccharide inflammatory stimulation in human umbilical artery smooth muscle cells and placental trophoblasts. Taken together, these findings establish a role for SPM actions in human placental tissue

    Omega-3 Fatty Acid-Derived Resolvin D2 Regulates Human Placental Vascular Smooth Muscle and Extravillous Trophoblast Activities

    Get PDF
    Omega-3 fatty acids are important to pregnancy and neonatal development and health. One mechanism by which omega-3 fatty acids exert their protective effects is through serving as substrates for the generation of specialized pro-resolving lipid mediators (SPM) that potently limit and resolve inflammatory processes. We recently identified that SPM levels are increased in maternal blood at delivery as compared to umbilical cord blood, suggesting the placenta as a potential site of action for maternal SPM. To explore this hypothesis, we obtained human placental samples and stained for the SPM resolvin D2 (RvD2) receptor GPR18 via immunohistochemistry. In so doing, we identified GPR18 expression in placental vascular smooth muscle and extravillous trophoblasts of the placental tissues. Using in vitro culturing, we confirmed expression of GPR18 in these cell types and further identified that stimulation with RvD2 led to significantly altered responsiveness (cytoskeletal changes and pro-inflammatory cytokine production) to lipopolysaccharide inflammatory stimulation in human umbilical artery smooth muscle cells and placental trophoblasts. Taken together, these findings establish a role for SPM actions in human placental tissue

    Omega-6 and Omega-3 Fatty Acid-Derived Oxylipins from the Lipoxygenase Pathway in Maternal and Umbilical Cord Plasma at Delivery and Their Relationship with Infant Growth

    Get PDF
    Omega-3 and omega-6 fatty acids are important for neonatal development and health. One mechanism by which omega-3 and omega-6 fatty acids exert their effects is through their metabolism into oxylipins and specialized pro-resolving mediators. However, the influence of oxylipins on fetal growth is not well understood. Therefore, the objective of this study was to identify oxylipins present in maternal and umbilical cord plasma and investigate their relationship with infant growth. Liquid chromatography-tandem mass spectrometry was used to quantify oxylipin levels in plasma collected at the time of delivery. Spearman\u27s correlations highlighted significant correlations between metabolite levels and infant growth. They were then adjusted for maternal obesity (normal body mass index (BMI: ≤30 kg/m2) vs. obese BMI (\u3e30 kg/m2) and smoking status (never vs. current/former smoker) using linear regression modeling. A p-value \u3c 0.05 was considered statistically significant. Our study demonstrated a diverse panel of oxylipins from the lipoxygenase pathway present at the time of delivery. In addition, both omega-3 and omega-6 oxylipins demonstrated potential influences on the birth length and weight percentiles. The oxylipins present during pregnancy may influence fetal growth and development, suggesting potential metabolites to be used as biomarkers for infant outcomes

    Omega-6 and Omega-3 Fatty Acid-Derived Oxylipins from the Lipoxygenase Pathway in Maternal and Umbilical Cord Plasma at Delivery and Their Relationship with Infant Growth

    Get PDF
    Omega-3 and omega-6 fatty acids are important for neonatal development and health. One mechanism by which omega-3 and omega-6 fatty acids exert their effects is through their metabolism into oxylipins and specialized pro-resolving mediators. However, the influence of oxylipins on fetal growth is not well understood. Therefore, the objective of this study was to identify oxylipins present in maternal and umbilical cord plasma and investigate their relationship with infant growth. Liquid chromatography–tandem mass spectrometry was used to quantify oxylipin levels in plasma collected at the time of delivery. Spearman’s correlations highlighted significant correlations between metabolite levels and infant growth. They were then adjusted for maternal obesity (normal body mass index (BMI: ≤30 kg/m2) vs. obese BMI (\u3e30 kg/m2) and smoking status (never vs. current/former smoker) using linear regression modeling. A p-value \u3c 0.05 was considered statistically significant. Our study demonstrated a diverse panel of oxylipins from the lipoxygenase pathway present at the time of delivery. In addition, both omega-3 and omega-6 oxylipins demonstrated potential influences on the birth length and weight percentiles. The oxylipins present during pregnancy may influence fetal growth and development, suggesting potential metabolites to be used as biomarkers for infant outcomes

    Something Smells Fishy: How Lipid Mediators Impact the Maternal-Fetal Interface and Neonatal Development

    Get PDF
    Normal pregnancy relies on inflammation for implantation, placentation, and parturition, but uncontrolled inflammation can lead to poor maternal and infant outcomes. Maternal diet is one modifiable factor that can impact inflammation. Omega-3 and -6 fatty acids obtained through the diet are metabolized into bioactive compounds that effect inflammation. Recent evidence has shown that the downstream products of omega-3 and -6 fatty acids may influence physiology during pregnancy. In this review, the current knowledge relating to omega-3 and omega-6 metabolites during pregnancy will be summarized

    Intrauterine Transfer of Polyunsaturated Fatty Acids in Mother–Infant Dyads as Analyzed at Time of Delivery

    Get PDF
    Polyunsaturated fatty acids (PUFAs) are essential for fetal development, and intrauterine transfer is the only supply of PUFAs to the fetus. The prevailing theory of gestational nutrient transfer is that certain nutrients (including PUFAs) may have prioritized transport across the placenta. Numerous studies have identified correlations between maternal and infant fatty acid concentrations; however, little is known about what role maternal PUFA status may play in differential intrauterine nutrient transfer. Twenty mother–infant dyads were enrolled at delivery for collection of maternal and umbilical cord blood, and placental tissue samples. Plasma concentrations of PUFAs were assessed using gas chromatography (GC-FID). Intrauterine transfer percentages for each fatty acid were calculated as follows: ((cord blood fatty acid level/maternal blood fatty acid level) × 100). Kruskal–Wallis tests were used to compare transfer percentages between maternal fatty acid tertile groups. A p-value \u3c 0.05 was considered significant. There were statistically significant differences in intrauterine transfer percentages of arachidonic acid (AA) (64% vs. 65% vs. 45%, p = 0.02), eicosapentaenoic acid (EPA) (41% vs. 19% vs. 17%, p = 0.03), and total fatty acids (TFA) (27% vs. 26% vs. 20%, p = 0.05) between maternal plasma fatty acid tertiles. Intrauterine transfer percentages of AA, EPA, and TFA were highest in the lowest tertile of respective maternal fatty acid concentration. These findings may indicate that fatty acid transfer to the fetus is prioritized during gestation even during periods of maternal nutritional inadequacy

    Consolidation of long-term memory: Evidence and alternatives.

    Get PDF
    Memory loss in retrograde amnesia has long been held to be larger for recent periods than for remote periods, a pattern usually referred to as the Ribot gradient. One explanation for this gradient is consolidation of long-term memories. Several computational models of such a process have shown how consolidation can explain characteristics of amnesia, but they have not elucidated how consolidation must be envisaged. Here findings are reviewed that shed light on how consolidation may be implemented in the brain. Moreover, consolidation is contrasted with alternative theories of the Ribot gradient. Consolidation theory, multiple trace theory, and semantization can all handle some findings well but not others. Conclusive evidence for or against consolidation thus remains to be found

    QuPath Digital Immunohistochemical Analysis of Placental Tissue

    Get PDF
    Background: QuPath is an open‑source digital image analyzer notable for its user‑friendly design, cross‑platform compatibility, and customizable functionality. Since it was first released in 2016, at least 624 publications have reported its use, and it has been applied in a wide spectrum of settings. However, there are currently limited reports of its use in placental tissue. Here, we present the use of QuPath to quantify staining of G‑protein coupled receptor 18 (GPR18), the receptor for the pro‑resolving lipid mediator Resolvin D2, in placental tissue. Methods: Whole slide images of vascular smooth muscle (VSM) and extravillous trophoblast (EVT) cells stained for GPR18 were annotated for areas of interest. Visual scoring was performed on these images by trained and in‑training pathologists, while QuPath scoring was performed with the methodology described herein. Results: Bland–Altman analyses showed that, for the VSM category, the two methods were comparable across all staining levels. For EVT cells, the high‑intensity staining level was comparable across methods, but the medium and low staining levels were not comparable. Conclusions: Digital image analysis programs offer great potential to revolutionize pathology practice and research by increasing accuracy and decreasing the time and cost of analysis. Careful study is needed to optimize this methodology further
    corecore