18 research outputs found
Free-Living Turtles Are a Reservoir for Salmonella but Not for Campylobacter
Different studies have reported the prevalence of Salmonella in turtles and its role in reptile-associated salmonellosis
in humans, but there is a lack of scientific literature related with the epidemiology of Campylobacter in turtles. The
aim of this study was to evaluate the prevalence of Campylobacter and Salmonella in free-living native (Emys
orbicularis, n=83) and exotic (Trachemys scripta elegans, n=117) turtles from 11 natural ponds in Eastern Spain. In
addition, different types of samples (cloacal swabs, intestinal content and water from Turtle containers) were
compared. Regardless of the turtle species, natural ponds where individuals were captured and the type of sample
taken, Campylobacter was not detected. Salmonella was isolated in similar proportions in native (8.0±3.1%) and
exotic (15.0±3.3%) turtles (p=0.189). The prevalence of Salmonella positive turtles was associated with the natural
ponds where animals were captured. Captured turtles from 8 of the 11 natural ponds were positive, ranged between
3.0±3.1% and 60.0±11.0%. Serotyping revealed 8 different serovars among four Salmonella enterica subspecies: S.
enterica subsp. enterica (n = 21), S. enterica subsp. salamae (n = 2), S. enterica subsp. diarizonae (n = 3), and S.
enterica subsp. houtenae (n = 1). Two serovars were predominant: S. Thompson (n=16) and S. typhimurium (n=3).
In addition, there was an effect of sample type on Salmonella detection. The highest isolation of Salmonella was
obtained from intestinal content samples (12.0±3.0%), while lower percentages were found for water from the
containers and cloacal swabs (8.0±2.5% and 3.0±1.5%, respectively). Our results imply that free-living turtles are a
risk factor for Salmonella transmission, but do not seem to be a reservoir for Campylobacter. We therefore rule out
turtles as a risk factor for human campylobacteriosis. Nevertheless, further studies should be undertaken in other
countries to confirm these results.This work was supported by the Conselleria de Infraestructura, Territorio y Medio Ambiente for their assistance and financial support (Life09-Trachemys, Resolution 28/02/12 CITMA). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.MarĂn, C.; Ingresa-Capaccioni, S.; GonzĂĄlez BodĂ, S.; Marco JimĂ©nez, F.; Vega Garcia, S. (2013). Free-Living Turtles Are a Reservoir for Salmonella but Not for Campylobacter. PLoS ONE. 8(8):1-6. https://doi.org/10.1371/journal.pone.0072350S1688(2012). The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Foodâborne Outbreaks in 2010. EFSA Journal, 10(3). doi:10.2903/j.efsa.2012.2597Kapperud, G. (2003). Factors Associated with Increased and Decreased Risk of Campylobacter Infection: A Prospective Case-Control Study in Norway. American Journal of Epidemiology, 158(3), 234-242. doi:10.1093/aje/kwg139Mermin, J., Hutwagner, L., Vugia, D., Shallow, S., Daily, P., ⊠Bender, J. (2004). Reptiles, Amphibians, and HumanSalmonellaInfection: A PopulationâBased, CaseâControl Study. Clinical Infectious Diseases, 38(s3), S253-S261. doi:10.1086/381594De Jong, B., Andersson, Y., & Ekdahl, K. (2005). Effect of Regulation and Education on Reptile-associated Salmonellosis. Emerging Infectious Diseases, 11(3), 398-403. doi:10.3201/eid1103.040694NAKADAI, A., KUROKI, T., KATO, Y., SUZUKI, R., YAMAI, S., YAGINUMA, C., ⊠HAYASHIDANI, H. (2005). Prevalence of Salmonella spp. in Pet Reptiles in Japan. Journal of Veterinary Medical Science, 67(1), 97-101. doi:10.1292/jvms.67.97Lafuente, S., Bellido, J. B., Moraga, F. A., Herrera, S., YagĂŒe, A., Montalvo, T., ⊠CaylĂ , J. A. (2013). Salmonella paratyphi B and Salmonella litchfield outbreaks associated with pet turtle exposure in Spain. Enfermedades Infecciosas y MicrobiologĂa ClĂnica, 31(1), 32-35. doi:10.1016/j.eimc.2012.05.013Van PELT, W., de WIT, M. A. S., WANNET, W. J. B., LIGTVOET, E. J. J., WIDDOWSON, M. A., & van DUYNHOVEN, Y. T. H. P. (2003). Laboratory surveillance of bacterial gastroenteric pathogens in The Netherlands, 1991â2001. Epidemiology and Infection, 130(3), 431-441. doi:10.1017/s0950268803008392Havelaar, A. H., Haagsma, J. A., Mangen, M.-J. J., Kemmeren, J. M., Verhoef, L. P. B., Vijgen, S. M. C., ⊠van Pelt, W. (2012). Disease burden of foodborne pathogens in the Netherlands, 2009. International Journal of Food Microbiology, 156(3), 231-238. doi:10.1016/j.ijfoodmicro.2012.03.029DOORDUYN, Y., VAN PELT, W., SIEZEN, C. L. E., VAN DER HORST, F., VAN DUYNHOVEN, Y. T. H. P., HOEBEE, B., & JANSSEN, R. (2007). Novel insight in the association between salmonellosis or campylobacteriosis and chronic illness, and the role of host genetics in susceptibility to these diseases. Epidemiology and Infection, 136(9), 1225-1234. doi:10.1017/s095026880700996xHAAGSMA, J. A., SIERSEMA, P. D., DE WIT, N. J., & HAVELAAR, A. H. (2010). Disease burden of post-infectious irritable bowel syndrome in The Netherlands. Epidemiology and Infection, 138(11), 1650-1656. doi:10.1017/s0950268810000531Allos, B. M., & Blaser, M. J. (1995). Campylobacter jejuni and the Expanding Spectrum of Related Infections. Clinical Infectious Diseases, 20(5), 1092-1101. doi:10.1093/clinids/20.5.1092Friedman, C. R., Hoekstra, R. M., Samuel, M., Marcus, R., Bender, J., ⊠Shiferaw, B. (2004). Risk Factors for SporadicCampylobacterInfection in the United States: A CaseâControl Study in FoodNet Sites. Clinical Infectious Diseases, 38(s3), S285-S296. doi:10.1086/381598STUDAHL, A., & ANDERSSON, Y. (2000). Risk factors for indigenous campylobacter infection: a Swedish case-control study. Epidemiology and Infection, 125(2), 269-275. doi:10.1017/s0950268899004562NEIMANN, J., ENGBERG, J., MĂLBAK, K., & WEGENER, H. C. (2003). A caseâcontrol study of risk factors for sporadic campylobacter infections in Denmark. Epidemiology and Infection, 130(3), 353-366. doi:10.1017/s0950268803008355DOORDUYN, Y., VAN DEN BRANDHOF, W. E., VAN DUYNHOVEN, Y. T. H. P., BREUKINK, B. J., WAGENAAR, J. A., & VAN PELT, W. (2010). Risk factors for indigenous Campylobacter jejuni and Campylobacter coli infections in The Netherlands: a case-control study. Epidemiology and Infection, 138(10), 1391-1404. doi:10.1017/s095026881000052xSchroter, M., Roggentin, P., Hofmann, J., Speicher, A., Laufs, R., & Mack, D. (2004). Pet Snakes as a Reservoir for Salmonella enterica subsp. diarizonae (Serogroup IIIb): a Prospective Study. Applied and Environmental Microbiology, 70(1), 613-615. doi:10.1128/aem.70.1.613-615.2004Van Meervenne, E., Botteldoorn, N., Lokietek, S., Vatlet, M., Cupa, A., Naranjo, M., ⊠Bertrand, S. (2009). Turtle-associated Salmonella septicaemia and meningitis in a 2-month-old baby. Journal of Medical Microbiology, 58(10), 1379-1381. doi:10.1099/jmm.0.012146-0Williams, L. P. (1965). Pet Turtles as a Cause of Human Salmonellosis. JAMA: The Journal of the American Medical Association, 192(5), 347. doi:10.1001/jama.1965.03080180005001Feeley, J. C., & Treger, M. D. (1969). Penetration of Turtle Eggs by Salmonella braenderup. Public Health Reports (1896-1970), 84(2), 156. doi:10.2307/4593527Mermin, J., Hoar, B., & Angulo, F. J. (1997). Iguanas and Salmonella Marina Infection in Children: A Reflection of the Increasing Incidence of Reptile-associated Salmonellosis in the United States. PEDIATRICS, 99(3), 399-402. doi:10.1542/peds.99.3.399Rodgers, G. L., Long, S. S., Smergel, E., & Dampier, C. (2002). Salmonella Infection Associated With a Pet Lizard in Siblings With Sickle Cell Anemia: An Avoidable Risk. Journal of Pediatric Hematology/Oncology, 24(1), 75-76. doi:10.1097/00043426-200201000-00020Tu, Z.-C., Zeitlin, G., Gagner, J.-P., Keo, T., Hanna, B. A., & Blaser, M. J. (2004). Campylobacter fetus of Reptile Origin as a Human Pathogen. Journal of Clinical Microbiology, 42(9), 4405-4407. doi:10.1128/jcm.42.9.4405-4407.2004Hidalgo-Vila, J., DĂaz-Paniagua, C., PĂ©rez-Santigosa, N., de Frutos-Escobar, C., & Herrero-Herrero, A. (2008). Salmonella in free-living exotic and native turtles and in pet exotic turtles from SW Spain. Research in Veterinary Science, 85(3), 449-452. doi:10.1016/j.rvsc.2008.01.011Harris, J. R., Neil, K. P., Behravesh, C. B., Sotir, M. J., & Angulo, F. J. (2010). Recent Multistate Outbreaks of HumanSalmonellaInfections Acquired from Turtles: A Continuing Public Health Challenge. Clinical Infectious Diseases, 50(4), 554-559. doi:10.1086/649932Geue, L., & Löschner, U. (2002). Salmonella enterica in reptiles of German and Austrian origin. Veterinary Microbiology, 84(1-2), 79-91. doi:10.1016/s0378-1135(01)00437-0SĂĄnchez-JimĂ©nez, M. M., RincĂłn-Ruiz, P. A., Duque, S., Giraldo, M. A., RamĂrez-Monroy, D. M., Jaramillo, G., & Cardona-Castro, N. (2011). Salmonella enterica in semi-aquatic turtles in Colombia. The Journal of Infection in Developing Countries, 5(05), 361-364. doi:10.3855/jidc.1126HEALTH SURVEY OF WILD AND CAPTIVE BOG TURTLES (CLEMMYS MUHLENBERGII) IN NORTH CAROLINA AND VIRGINIA. (2002). Journal of Zoo and Wildlife Medicine, 33(4), 311-316. doi:10.1638/1042-7260(2002)033[0311:hsowac]2.0.co;2Richards, J. M., Brown, J. D., Kelly, T. R., Fountain, A. L., & Sleeman, J. M. (2004). ABSENCE OF DETECTABLE SALMONELLA CLOACAL SHEDDING IN FREE-LIVING REPTILES ON ADMISSION TO THE WILDLIFE CENTER OF VIRGINIA. Journal of Zoo and Wildlife Medicine, 35(4), 562-563. doi:10.1638/03-070Hidalgo-Vila, J., DĂaz-Paniagua, C., de Frutos-Escobar, C., JimĂ©nez-MartĂnez, C., & PĂ©rez-Santigosa, N. (2007). Salmonella in free living terrestrial and aquatic turtles. Veterinary Microbiology, 119(2-4), 311-315. doi:10.1016/j.vetmic.2006.08.012Acheson, D., & Allos, B. M. (2001). Campylobacter jejuni Infections: Update on Emerging Issues and Trends. Clinical Infectious Diseases, 32(8), 1201-1206. doi:10.1086/319760Briones, V., Tellez, S., Goyache, J., Ballesteros, C., del Pilar Lanzarot, M., Dominguez, L., & Fernandez-Garayzabal, J. F. (2004). Salmonella diversity associated with wild reptiles and amphibians in Spain. Environmental Microbiology, 6(8), 868-871. doi:10.1111/j.1462-2920.2004.00631.xMan, S. M. (2011). The clinical importance of emerging Campylobacter species. Nature Reviews Gastroenterology & Hepatology, 8(12), 669-685. doi:10.1038/nrgastro.2011.191Ugarte-Ruiz, M., GĂłmez-Barrero, S., Porrero, M. C., Ălvarez, J., GarcĂa, M., ComerĂłn, M. C., ⊠DomĂnguez, L. (2012). Evaluation of four protocols for the detection and isolation of thermophilic Campylobacter from different matrices. Journal of Applied Microbiology, 113(1), 200-208. doi:10.1111/j.1365-2672.2012.05323.xJeffrey, J. S., Tonooka, K. H., & Lozanot, J. (2001). Prevalence of Campylobacter spp. from Skin, Crop, and Intestine of Commercial Broiler Chicken Carcasses at Processing. Poultry Science, 80(9), 1390-1392. doi:10.1093/ps/80.9.1390Perko-MĂ€kelĂ€, P., Isohanni, P., Katzav, M., Lund, M., HĂ€nninen, M.-L., & Lyhs, U. (2009). A longitudinal study of Campylobacter distribution in a turkey production chain. Acta Veterinaria Scandinavica, 51(1). doi:10.1186/1751-0147-51-18Saelinger, C. A., Lewbart, G. A., Christian, L. S., & Lemons, C. L. (2006). Prevalence ofSalmonellaspp in cloacal, fecal, and gastrointestinal mucosal samples from wild North American turtles. Journal of the American Veterinary Medical Association, 229(2), 266-268. doi:10.2460/javma.229.2.266Chambers, D. L., & Hulse, A. C. (2006). Salmonella Serovars in the Herpetofauna of Indiana County, Pennsylvania. Applied and Environmental Microbiology, 72(5), 3771-3773. doi:10.1128/aem.72.5.3771-3773.2006Gaertner, J. P., Hahn, D., Jackson, J., Forstner, M. R. J., & Rose, F. L. (2008). Detection of Salmonellae in Captive and Free-Ranging Turtles Using Enrichment Culture and Polymerase Chain Reaction. Journal of Herpetology, 42(2), 223-231. doi:10.1670/07-1731.1Magnino, S., Colin, P., Dei-Cas, E., Madsen, M., McLauchlin, J., Nöckler, K., ⊠Van Peteghem, C. (2009). Biological risks associated with consumption of reptile products. International Journal of Food Microbiology, 134(3), 163-175. doi:10.1016/j.ijfoodmicro.2009.07.001XIA, X., ZHAO, S., SMITH, A., MCEVOY, J., MENG, J., & BHAGWAT, A. (2009). Characterization of Salmonella isolates from retail foods based on serotyping, pulse field gel electrophoresis, antibiotic resistance and other phenotypic properties. International Journal of Food Microbiology, 129(1), 93-98. doi:10.1016/j.ijfoodmicro.2008.11.007Franco, A., Hendriksen, R. S., Lorenzetti, S., Onorati, R., Gentile, G., DellâOmo, G., ⊠Battisti, A. (2011). Characterization of Salmonella Occurring at High Prevalence in a Population of the Land Iguana Conolophus subcristatus in GalĂĄpagos Islands, Ecuador. PLoS ONE, 6(8), e23147. doi:10.1371/journal.pone.0023147Scheelings, T. F., Lightfoot, D., & Holz, P. (2011). PREVALENCE OF SALMONELLA IN AUSTRALIAN REPTILES. Journal of Wildlife Diseases, 47(1), 1-11. doi:10.7589/0090-3558-47.1.1Pasmans, F., Blahak, S., Martel, A., & Pantchev, N. (2008). Introducing reptiles into a captive collection: The role of the veterinarian. The Veterinary Journal, 175(1), 53-68. doi:10.1016/j.tvjl.2006.12.009Strohl, P., Tilly, B., Fremy, S., Brisabois, A., & Guerin-Faublee, V. (2004). Prevalence of Salmonella shedding in faeces by captive chelonians. Veterinary Record, 154(2), 56-58. doi:10.1136/vr.154.2.5
Surveillance of Antibiotic Susceptibility Patterns among Shigella sonnei Strains Isolated in Belgium during the 18-Year Period 1990 to 2007âż
This study was conducted to determine the frequency and pattern of antimicrobial susceptibility of Shigella sonnei, the predominant species causing shigellosis in Belgium. Between 1990 and 2007, a total of 7,307 strains, mainly (98.2%) isolated from stools, were diagnosed by peripheral laboratories before being confirmed as Shigella strains by serotyping by the National Reference Center of Salmonella and Shigella. A significant increase in resistances to tetracycline, streptomycin, trimethoprim, sulfonamides, and cotrimoxazole (i.e., trimethoprim in combination with sulfonamides) was observed during this period. Since 1998, resistance to nalidixic acid also increased to reach a peak (12.8%) of resistant isolates in 2004. Concomitantly, multidrug resistance (MDR) in this species emerged in 2007, with 82% of total isolates being MDR. However, during this 18-year period, all isolates remained fully susceptible to ciprofloxacin and gentamicin. The work includes the molecular characterization of mechanisms of resistance to ampicillin, tetracycline, chloramphenicol, and cotrimoxazole and class 1 and class 2 integrons. S. sonnei acquired antimicrobial resistance to traditional antibiotics (ampicillin and tetracycline) by horizontal gene transfer, while the genetic stability of transposons was responsible for a high (89%) proportion of resistance to a commonly prescribed antibiotic (cotrimoxazole). Therefore, cotrimoxazole should no longer be considered appropriate as empirical therapy for treatment of shigellosis in Belgium when antibiotics are indicated. Rates of resistance to nalidixic acid should also be attentively monitored to detect any shift in fluoroquinolone resistance, because it represents the first line among antibiotics used in the treatment of shigellosis
Turtle-associated Salmonella septicaemia and meningitis in a 2-month-old baby.
<p>A severe case of reptile-associated salmonellosis which caused septicaemia and meningitis in a 2-month-old baby is reported. The infrequent serotype Salmonella enterica subsp.(I) enterica serotype Abony (4,5 : b : enx) was detected in the human sample as well as in the pet turtle&#39;s faeces. The importance of regulation and public awareness is highlighted.</p></p
Detection of a geographical and endemic cluster of hyper-invasive meningococcal strains.
<p>From 2006 to December 2009, 45 out of the 513 strains isolated from patients with invasive meningococcal disease in Belgium, were identified as Neisseria meningitidis serogroup B, non-serotypeable, subtype P1.14 (B:NT:P1.14). Most cases were geographically clustered in the northern part of the country. Multilocus Sequence Typing and antigen gene sequencing combined with Pulsed-Field Gel electrophoresis were used to investigate this cluster. Molecular typing showed that 39 out of these 45 N. meningitidis strains belonged to the clonal complex cc-269. The presence of the same PorA Variable Regions (VR1-VR2: 22, 14), the FetA allele (F5-1) and the highly similar Pulsed-Field Gel Electrophoresis profiles, supported genetic relatedness for 38 out of these 39 isolates. Retrospective analysis of B:NT:P1.22,14 isolates from 1999 onwards suggested that these strains belonging to the cc-269 complex, first emerged in the Belgian province of West-Flanders in 2004. This study showed that the combination of molecular tools with classical methods enabled reliable outbreak detection as well as a cluster identification.</p></p
Lessons learned from the management of a national outbreak of Salmonella ohio linked to pork meat processing and distribution.
<p>During the summer of 2005, an increase in reports of human cases of Salmonella enterica serovar Ohio infection was observed in Belgium. During 11 weeks, between 1 July and 13 September, 60 cases of laboratory-confirmed Salmonella Ohio infection were reported to the National Reference Centre for Salmonella, with a peak onset of symptoms in the third week of July. All clinical isolates caused self-limiting gastroenteritis; both genders (32 males and 28 females) and all age groups (three children <5 years of age, three children 5 to 14 years of age, 32 adults 15 to 64 years of age, and 22 adults >65 years of age) were affected. The isolates were distributed throughout Belgium but a cluster of several cases was observed around Brussels. At the same time, an increase in the incidence of this serovar was observed in the Salmonella isolates originating from the official surveillance campaign conducted by the Federal Agency for the Safety of the Food Chain, which identified pork as a likely source of the outbreak strain. Pulsed-field gel electrophoresis typing confirmed the clonal relationship between the human isolates, the isolates from samples collected in the cutting plants, and the isolates from pork meat in distribution. Further epidemiological investigations indicated that one particular slaughterhouse was involved. In that slaughterhouse, the carcasses were contaminated during the evisceration process because of contaminated equipment and uncontrolled environmental conditions. This study highlights the importance of a centralized surveillance laboratory in the management of outbreaks and the need of strict implementation of hygienic rules to avoid this type of outbreak.</p></p
Creation of an NCI comparative brain tumor consortium: informing the translation of new knowledge from canine to human brain tumor patients
On September 14â15, 2015, a meeting of clinicians and investigators in the fields of veterinary and human neuro-oncology, clinical trials, neuropathology, and drug development was convened at the National Institutes of Health campus in Bethesda, Maryland. This meeting served as the inaugural event launching a new consortium focused on improving the knowledge, development of, and access to naturally occurring canine brain cancer, specifically glioma, as a model for human disease. Within the meeting, a SWOT (strengths, weaknesses, opportunities, and threats) assessment was undertaken to critically evaluate the role that naturally occurring canine brain tumors could have in advancing this aspect of comparative oncology aimed at improving outcomes for dogs and human beings. A summary of this meeting and subsequent discussion are provided to inform the scientific and clinical community of the potential for this initiative. Canine and human comparisons represent an unprecedented opportunity to complement conventional brain tumor research paradigms, addressing a devastating disease for which innovative diagnostic and treatment strategies are clearly needed