72 research outputs found

    U-Pb geochronology on zircon and columbite-group minerals of the Cap de Creus pegmatites, NE Spain

    Get PDF
    The Cap de Creus granitic pegmatites in the eastern Catalan Pyrenees were dated using in situ U-Pb geochronology by laser ablation ICP-MS on zircon and columbite-group minerals (CGM), which are present in the different types of pegmatites from type I (K-feldspar pegmatites, least evolved) to type IV (albite pegmatites, most evolved) and therefore allow dating the different pegmatitic pulses. In a type III pegmatite where zircon and CGM are co-genetically associated in the same sample, both minerals were dated using zircon and tantalite reference materials, respectively, to avoid laser-induced matrix-dependent fractionation. In one sample, xenotime genetically associated with zircon was also dated. Two ages were obtained for type I and three ages for type III pegmatites. Three of these 5 ages range from 296.2 ± 2.5 to 301.9 ± 3.8 Ma and are allocated to the primary magmatic stage of crystallization and therefore to the emplacement event. Two younger ages (290.5 ± 2.5 and 292.9 ± 2.9 Ma) obtained on secondary zircon and xenotime, respectively, are interpreted as late post-solidus hydrothermal remobilization. There is no age difference between type I and type III pegmatites. The mean 299 Ma primary magmatic age allows the main late Carboniferous deformation event to be dated and is also synchronous with other peraluminous and calc-alkaline granites in the Pyrenees. However, the youngest ages around 292 Ma imply that tectonics was still active in Early Permian times in the Cap de Creus area

    Métallogénie du tantale: application aux différents styles de minéralisations en tantale dans la pegmatite de Tanco, Manitoba, Canada

    No full text
    Tantalum is a high-tech metal that is mainly mined from rare-element pegmatites. Although tantalum mineralogy has been well characterized, very little is known about the processes that control the formation of Ta deposits. The goal of my thesis is to constrain Ta mineralization processes in the giant Tanco pegmatite (Canada), the third most important Ta deposit in the world. The Tanco pegmatite is extremely complex in terms of petrogenesis and mineralogy, and tantalum mineralization shows a complexity that reflects the highly fractionated features of the igneous body. I investigated two different aspects of Ta mineralization in the Tanco pegmatite: 1) its association with metagabbro rafts embedded in the pegmatite; 2) its association with late mica alteration of the central zones of the pegmatite. The fundamental questions behind those studies are : is Ta mineralization influenced by external factors ? What is the role of aqueous fluids (originating either externally or internally from the pegmatite) on Ta mineralization ? Through the study of these two complementary styles of mineralization, I was able to evaluate the contribution of magmatic versus metasomatic processes in the Ta mineralization, and to advance a metallogenetic model for Ta mineralization at Tanco, whereby Ta enrichment is considered as entirely magmatic in origin.Le tantale (Ta) est un métal rare essentiel de l'industrie high-tech, que l'on extrait principalement des pegmatites à éléments rares. Bien que la minéralogie du tantale soit relativement bien connue, on connaît très peu les processus qui contrôlent la formation d'un gisement de tantale. Le but de ma thèse est de comprendre les minéralisations en Ta dans la pegmatite géante de Tanco (Canada), l'un des trois plus gros gisements de Ta au monde. Cette pegmatite est extrêmement complexe pétrogénétiquement et minéralogiquement, et montre divers styles de minéralisations en Ta. L'étude de deux de ces styles, l'un associé aux zones magmatiques précoces de la pegmatite, l'autre, aux zones centrales altérées par des processus plus tardifs, m'a permis d'évaluer la contribution des processus magmatiques et métasomatiques dans la minéralisation, et d'établir un modèle métallogénique pour le Ta à Tanco

    Gisement de pegmatite à béryl dans la région d'Antsirabe, Madagascar

    No full text
    Gisement de pegmatite à béryl dans la région d'Antsirabe, Madagasca

    The effect of disequilibrium crystallization on Nb-Ta fractionation in pegmatites : constraints from crystallization experiments of tantalite-tapiolite

    No full text
    Tapiolite [FeTa2O6] and columbite-group minerals [(Fe, Mn)(Ta, Nb)(2)O-6] are common Nb-Ta-bearing accessory minerals in rare-element granites and pegmatites. Their compositional gap has inspired several experimental studies, but none of them have succeeded in reproducing the parameters that influence the compositional gap. In this study, tapiolite and columbite-group minerals (CGM) were crystallized from water-saturated, flux-rich granitic melts at various conditions of pressure, temperature, oxygen fugacity, and Ti contents. Crystals with a size as small as 500 nm were analyzed with a field emission gun (FEG) electron microprobe. The results show that temperature, pressure, and Ti content only slightly affect the compositional gaps between tapiolite and CGM, whereas high f(O2) leads to complete solid solution between a rutile-structured component Fe3+ TaO4 and (Fe, Mn) Ta2O6. The experimental CGM-tapiolite compositional gaps are compared with natural CGM-tapiolite pairs from rare-element granites and pegmatites worldwide. This study reveals that the crystallographic structure of tapiolite and CGM could be the dominant parameter that influences the position of the compositional gap. Order-disorder in CGM and tapiolite is tightly linked to disequilibrium crystallization triggered by supersaturation. Significant isothermal Nb-Ta fractionation is observed inside CGM crystals that grow at high degrees of supersaturation. The effect of supersaturation prevails over the solubility effect that is known to increase the Ta/(Ta+Nb) ratio in CGM and coexisting melts. Thus, even if global equilibrium in terms of the solubility of Nb-Ta-bearing minerals is attained, the Ta/(Nb+Ta) ratio in the crystals may differ significantly from equilibrium. It implies that Nb-Ta fractionation in Nb-Ta oxides is controlled by crystallization kinetics rather than equilibrium chemical fractionation (or any other processes such as F-complexing of Ta or fluid exsolution) in dynamic systems that can rapidly reach supersaturated conditions. These results have important implications for the understanding of crystallization processes in highly evolved and pegmatite-forming magmas

    Métallogénie du tantale (application aux différents styles de minéralisations en tantale dans la pegmatite de Tanco, Manitoba, Canada)

    No full text
    TOULOUSE3-BU Sciences (315552104) / SudocTOULOUSE-Observ. Midi Pyréné (315552299) / SudocSudocFranceF

    Textural Features and Chemical Evolution in Tantalum Oxides: Magmatic Versus Hydrothermal Origins for Ta Mineralization in the Tanco Lower Pegmatite, Manitoba, Canada

    No full text
    International audienceTantalum, a key element in the electronics industry, is produced mainly from rare element granitic pegmatites. Although their internal structure, mineralogy, and petrogenesis have been extensively investigated, the processes that control tantalum mineralization remain poorly understood, in particular the role of fluids in the crystallization of tantalum ore. One of the major problems arises from the difficulty in distinguishing primary magmatic from secondary, hydrothermal textures in such complex rocks. In the Tanco pegmatite, Manitoba, Canada, tantalum mineralization shows a complexity that reflects the complex petrogenesis of its host pegmatite. Eight different families of tantalum oxides occur in various associations and compositions. The Tanco Lower pegmatite is an isolated body beneath the main pegmatite body that contains abundant tantalum associated with mica alteration. Tantalum mineralization in the Tanco Lower pegmatite occurs as three different styles. Facies 1 is hosted by the wall zone and hosts primary magmatic Ta oxides with simple textures (progressive and oscillatory zoning). Facies 2 is hosted by the lower and upper intermediate zones where most mineralization occurs with dendritic amblygonite. Facies 3 is hosted by the central zone, which is affected by mica alteration. In this latter facies, the oxides show particularly complex textures evident from X-ray mapping. By combining information obtained from textural observations and chemical analyses, we are able to determine the paragenesis for each Ta oxide-bearing mineral assemblage and hence to evaluate the relative contributions of magmatic versus hydrothermal processes. In complex associations, we observe relics of primary Ta phases that are replaced or overgrown by secondary Ta phases. We propose the paragenetic sequence: columbite group minerals + microlite (early primary magmatic) -> columbite + wodginite group minerals + microlite (late primary magmatic) -> wodginite group minerals + microlite (secondary magmatic) -> ferrotapiolite (secondary magmatic). In addition, chemical variations were identified in the columbite and wodginite group minerals, both at the crystal scale and at the pegmatite scale. Columbite and wodginite group minerals show the typical Ta* = Ta/(Ta + Nb) and Mn* = Mn/(Mn + Fe) (atomic ratios) increase from earlier to later zones. At the crystal scale, the increase in Ta* and Mn* with fractionation in the columbite group is explained by the higher solubility of the Ta end member relative to the Nb end member and the crystallization of other minerals that shift the melt composition toward Mn* enrichment. The fractionation trend in the wodginite group shows Fe enrichment, which is consistent with experimental results that show a higher solubility of the Fe end member relative to the Mn end member in columbite group minerals. Considering the available experimental data, as well as the intimate association of Ta oxides with zircon observed in this study, we conclude that tantalum mineralization is a product of direct crystallization from the melt rather than hydrothermal in origin. Fluids are attributed an indirect role only, as they could have brought minor elements (Fe, Mn, or Ca) into the melt, which resulted in the crystallization of secondary Ta phases. Textural evidence shows that the late secondary phases were formed at the same time as mica alteration. We suggest that mica alteration was due to a late melt, rather than a hydrothermal fluid, that reacted with the blocky K-feldspar of the central zone. During the alteration event, tantalum was remobilized from primary phases and incorporated in new, secondary Ta oxide species
    • …
    corecore