2,311 research outputs found
The 41Ca(n,α)38Ar cross section up to 100 keV neutron energy
The 41Ca(n,alpha)38Ar reaction cross section has been studied with resonance neutrons at the GELINA neutron facility of the Institute for Reference Materials and Measurements in Geel (Belgium) from a few eV up to 100 keV. A Frisch-gridded ionization chamber with methane as detector gas was installed at a 30 meter long flight path. About 20 resonances have been identified. From the cross section data obtained, the Maxwellian averaged cross section (MACS) as a function of stellar temperature has been calculated by numerical integration
245Cm fission cross section measurement in the thermal energy region
A new cross section measurement for the ^245Cm(n,f) reaction in the thermal energy region has been performed at the GELINA neutron facility of the Institute for Reference Materials and Measurements (IRMM) in Geel, Belgium. The energy of the neutrons is determined applying the time of flight method using a flight path length of about 9 m. In the present work, the incident neutron energy covers 10 meV up to a few eV. A 98.48% enriched ^245Cm sample was mounted back-to-back with a ^10B sample in the centre of a vacuum chamber together with two surface barrier detectors positioned outside the neutron beam. One detector measured the ^10B(n,a)^7Li reaction products for the neutron flux determination, while the second one registered the ^245Cm(n,f) fragments. In this way, the neutron flux can be determined simultaneously with the fission fragments. A control measurement has been performed replacing the ^245Cm sample with a ^235U sample in order to check that the well-known ^235U(n,f) cross section can be reproduced. Our measurement yielded a ^245Cm(nth,f) cross section of 2131±43±173 b and a Westcott factor gf=0.939±0.019
A Framework for Directional and Higher-Order Reconstruction in Photoacoustic Tomography
Photoacoustic tomography is a hybrid imaging technique that combines high
optical tissue contrast with high ultrasound resolution. Direct reconstruction
methods such as filtered backprojection, time reversal and least squares suffer
from curved line artefacts and blurring, especially in case of limited angles
or strong noise. In recent years, there has been great interest in regularised
iterative methods. These methods employ prior knowledge on the image to provide
higher quality reconstructions. However, easy comparisons between regularisers
and their properties are limited, since many tomography implementations heavily
rely on the specific regulariser chosen. To overcome this bottleneck, we
present a modular reconstruction framework for photoacoustic tomography. It
enables easy comparisons between regularisers with different properties, e.g.
nonlinear, higher-order or directional. We solve the underlying minimisation
problem with an efficient first-order primal-dual algorithm. Convergence rates
are optimised by choosing an operator dependent preconditioning strategy. Our
reconstruction methods are tested on challenging 2D synthetic and experimental
data sets. They outperform direct reconstruction approaches for strong noise
levels and limited angle measurements, offering immediate benefits in terms of
acquisition time and quality. This work provides a basic platform for the
investigation of future advanced regularisation methods in photoacoustic
tomography.Comment: submitted to "Physics in Medicine and Biology". Changes from v1 to
v2: regularisation with directional wavelet has been added; new experimental
tests have been include
StandortverhÀltnisse und Morphometrie von Geranium sanguineum L auf der Combe Martigny im Walliser RhÎnetal, Schweiz
A significant larger stem height, internode number per stem, ramification number per stem, leaf-tip length, stem number/m2, leaf area indes/m2 and stem number per individual plant (polycormon) of Geranium sanguineum have been observed in forbland of the Geranio-Trifolietum alpestris as compared with forest, woodland and grassland. We summarize this in the statement that Geranium sanguineum attains its maximum vitality in forb communities. The highest presence of G. sanguineum falls within the same formation according to the referred literature.The time consuming analysis of air and soil temperature, wind velocity and plant nutrient content within the soil did not bring in the expected decisive site factor(s) in the vegetation catena forest-forbland-grassland. According to earlier âholisticâ field observations the lower vitality and lower presence of G. sanguineum in forest as compared with forbland may be caused by the light factor. The absence of G. sanguineum in the majority of the dry grasslands in the research area may be due to excessive drainage of the site or/and present or former mowing or grazing.The higher vitality of G. sanguineum within the forb communities has been observed in the forest bordering type. The decisive site factor is here, following Dierschke, the intermittent sunlight along the forest edge.Guidelines for the classification of the Geranio-Trifolietum alpestris (in Quercetea pubescentipetraeae, Trifolio-Geranietea or Festuco-Brometea) cannot be derived from the sampled microclimatic and edaphic parameters. The statements of both Jakucs (1972) and Dierschke (1974) about this question turned out to be valid locally only
Phenotype-limited distributions: short-billed birds move away during times that prey bury deeply
In our seasonal world, animals face a variety of environmental conditions in the course of the year. To cope with such seasonality, animals may be phenotypically flexible, but some phenotypic traits are fixed. If fixed phenotypic traits are functionally linked to resource use, then animals should redistribute in response to seasonally changing resources, leading to a âphenotype-limitedâ distribution. Here, we examine this possibility for a shorebird, the bar-tailed godwit (Limosa lapponica; a long-billed and sexually dimorphic shorebird), that has to reach buried prey with a probing bill of fixed length. The main prey of female bar-tailed godwits is buried deeper in winter than in summer. Using sightings of individually marked females, we found that in winter only longer-billed individuals remained in the Dutch Wadden Sea, while the shorter-billed individuals moved away to an estuary with a more benign climate such as the Wash. Although longer-billed individuals have the widest range of options in winter and could therefore be selected for, counterselection may occur during the breeding season on the tundra, where surface-living prey may be captured more easily with shorter bills. Phenotype-limited distributions could be a widespread phenomenon and, when associated with assortative migration and mating, it may act as a precursor of phenotypic evolution
Optimal Taylor-Couette flow: Radius ratio dependence
Taylor-Couette flow with independently rotating inner (i) and outer (o)
cylinders is explored numerically and experimentally to determine the effects
of the radius ratio {\eta} on the system response. Numerical simulations reach
Reynolds numbers of up to Re_i=9.5 x 10^3 and Re_o=5x10^3, corresponding to
Taylor numbers of up to Ta=10^8 for four different radius ratios {\eta}=r_i/r_o
between 0.5 and 0.909. The experiments, performed in the Twente Turbulent
Taylor-Couette (T^3C) setup, reach Reynolds numbers of up to Re_i=2x10^6$ and
Re_o=1.5x10^6, corresponding to Ta=5x10^{12} for {\eta}=0.714-0.909. Effective
scaling laws for the torque J^{\omega}(Ta) are found, which for sufficiently
large driving Ta are independent of the radius ratio {\eta}. As previously
reported for {\eta}=0.714, optimum transport at a non-zero Rossby number
Ro=r_i|{\omega}_i-{\omega}_o|/[2(r_o-r_i){\omega}_o] is found in both
experiments and numerics. Ro_opt is found to depend on the radius ratio and the
driving of the system. At a driving in the range between {Ta\sim3\cdot10^8} and
{Ta\sim10^{10}}, Ro_opt saturates to an asymptotic {\eta}-dependent value.
Theoretical predictions for the asymptotic value of Ro_{opt} are compared to
the experimental results, and found to differ notably. Furthermore, the local
angular velocity profiles from experiments and numerics are compared, and a
link between a flat bulk profile and optimum transport for all radius ratios is
reported.Comment: Submitted to JFM, 28 pages, 17 figure
- âŠ