3,577 research outputs found
Change Mining in Adaptive Process Management Systems
The wide-spread adoption of process-aware information systems has resulted in a bulk of computerized information about real-world processes. This data can be utilized for process performance analysis as well as for process improvement. In this context process mining offers promising perspectives. So far, existing mining techniques have been applied to operational processes, i.e., knowledge is extracted from execution logs (process discovery), or execution logs are compared with some a-priori process model (conformance checking). However, execution logs only constitute one kind of data gathered during process enactment. In particular, adaptive processes provide additional information about process changes (e.g., ad-hoc changes of single process instances) which can be used to enable organizational learning. In this paper we present an approach for mining change logs in adaptive process management systems. The change process discovered through process mining provides an aggregated overview of all changes that happened so far. This, in turn, can serve as basis for all kinds of process improvement actions, e.g., it may trigger process redesign or better control mechanisms
Nontrivial Polydispersity Exponents in Aggregation Models
We consider the scaling solutions of Smoluchowski's equation of irreversible
aggregation, for a non gelling collision kernel. The scaling mass distribution
f(s) diverges as s^{-tau} when s->0. tau is non trivial and could, until now,
only be computed by numerical simulations. We develop here new general methods
to obtain exact bounds and good approximations of . For the specific
kernel KdD(x,y)=(x^{1/D}+y^{1/D})^d, describing a mean-field model of particles
moving in d dimensions and aggregating with conservation of ``mass'' s=R^D (R
is the particle radius), perturbative and nonperturbative expansions are
derived.
For a general kernel, we find exact inequalities for tau and develop a
variational approximation which is used to carry out the first systematic study
of tau(d,D) for KdD. The agreement is excellent both with the expansions we
derived and with existing numerical values. Finally, we discuss a possible
application to 2d decaying turbulence.Comment: 16 pages (multicol.sty), 6 eps figures (uses epsfig), Minor
corrections. Notations improved, as published in Phys. Rev. E 55, 546
Kinetic Anomalies in Addition-Aggregation Processes
We investigate irreversible aggregation in which monomer-monomer,
monomer-cluster, and cluster-cluster reactions occur with constant but distinct
rates K_{MM}, K_{MC}, and K_{CC}, respectively. The dynamics crucially depends
on the ratio gamma=K_{CC}/K_{MC} and secondarily on epsilon=K_{MM}/K_{MC}. For
epsilon=0 and gamma<2, there is conventional scaling in the long-time limit,
with a single mass scale that grows linearly in time. For gamma >= 2, there is
unusual behavior in which the concentration of clusters of mass k, c_k decays
as a stretched exponential in time within a boundary layer k<k* propto
t^{1-2/gamma} (k* propto ln t for gamma=2), while c_k propto t^{-2} in the bulk
region k>k*. When epsilon>0, analogous behaviors emerge for gamma<2 and gamma
>= 2.Comment: 6 pages, 2 column revtex4 format, for submission to J. Phys.
Similarity of business process models : metrics and evaluation
It is common for large and complex organizations to maintain repositories of business process models in order to document and to continuously improve their operations. Given such a repository, this paper deals with the problem of retrieving those process models in the repository that most closely resemble a given process model or fragment thereof. The paper presents three similarity metrics that can be used to answer such queries: (i) label matching similarity that compares the labels attached to process model elements; (ii) structural similarity that compares element labels as well as the topology of process models; and (iii) behavioral similarity that compares element labels as well as causal relations captured in the process model. These similarity metrics are experimentally evaluated in terms of precision and recall, and in terms of correlation of the metrics with respect to human judgement. The experimental results show that all three metrics yield comparable results, with structural similarity slightly outperforming the other two metrics. Also, all three metrics outperform traditional search engines when it comes to searching through a repository for similar business process models
Phase separation and the segregation principle in the infinite-U spinless Falicov-Kimball model
The simplest statistical-mechanical model of crystalline formation (or alloy
formation) that includes electronic degrees of freedom is solved exactly in the
limit of large spatial dimensions and infinite interaction strength. The
solutions contain both second-order phase transitions and first-order phase
transitions (that involve phase-separation or segregation) which are likely to
illustrate the basic physics behind the static charge-stripe ordering in
cuprate systems. In addition, we find the spinodal-decomposition temperature
satisfies an approximate scaling law.Comment: 19 pages and 10 figure
- …