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Abstract

It is common for large organizations to maintain repositories of business pro-

cess models in order to document and to continuously improve their operations.

Given such a repository, this paper deals with the problem of retrieving those

models in the repository that most closely resemble a given process model or

fragment thereof. Up to now, there is a notable research gap on comparing dif-

ferent approaches to this problem and on evaluating them in the same setting.

Therefore, this paper presents three similarity metrics that can be used to an-

swer queries on process repositories: (i) node matching similarity that compares

the labels and attributes attached to process model elements; (ii) structural sim-

ilarity that compares element labels as well as the topology of process models;

and (iii) behavioral similarity that compares element labels as well as causal

relations captured in the process model. These metrics are experimentally eval-

uated in terms of precision and recall. The results show that all three metrics

yield comparable results, with structural similarity slightly outperforming the

other two metrics. Also, all three metrics outperform text-based search engines

when it comes to searching through a repository for similar business process
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models.
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1. Introduction

Many organizations have built over time repositories of business process

models that serve as a knowledge base for their ongoing business process man-

agement efforts. Such repositories may contain hundreds or even thousands of

business process models. For example, we have access to a repository of the

Dutch local governments council containing nearly 500 process models. This is

a small number compared to the size of process model repositories maintained in

multi-national companies, which typically contain several thousand models [1].

The SAP reference model repository, which we use in this paper for experimental

purposes, contains 604 process models.

The management of large process model repositories requires effective search

techniques. For example, before adding a new process model to a repository, one

needs to check that a similar model does not already exist in order to prevent

duplication. Similarly, in the context of company mergers, process analysts need

to identify common or similar business processes between the merged companies

in order to analyze their overlap and to identify areas for consolidation. These

tasks require users to retrieve process models based on their similarity with

respect to a given “search model”. We use the term process model similarity

query to refer to such search queries over process model repositories.

One may argue that traditional (text-based) search engines can be used to

index and to search business process model repositories. However, text-based

search engines are based on keyword search and text similarity. They are clearly

useful in situations where a user is looking for a model that contains a task with

a certain keyword in its label. On the other hand, it is unclear in how far search

engines are appropriate for process model similarity queries, since they do not

take into account the structure and behavioral semantics of process models.
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What is needed in this research area is a comparative evaluation of different

approaches to this problem.

This paper studies three classes of similarity metrics designed to answer

process model similarity queries. Within each class we study some variations as

explained further on in the paper. The three classes of metrics are derived from

the increasing levels of ‘semantic richness’ at which business process models

can be considered: we can consider individual tasks, tasks and their relations

and the behavior of an entire process as it is induced by tasks and relations.

Consequently, the first class of metrics exploits the fact that process models

are composed of labeled nodes. These metrics start by calculating an optimal

matching between the nodes in the process models by comparing their labels.

Based on this matching, a similarity score is calculated taking into account the

overall size of the models. The second class of metrics is structural. It is based

on the observation that nodes in process models with their relations constitute

a mathematical graph. Based on that observation it uses existing techniques

for graph comparison based on graph-edit distance [2], which is commonly used

in information retrieval. The third class of metrics is behavioral, in the sense

that it takes into account the causal relations between tasks in a process model.

These causal relations are represented in the form of a causal footprint [3].

The paper is an extension of our earlier works [4, 5, 6] in which we introduced

structural and behavioral similarity notions along with initial evaluations. In

this paper, we provide a comparative evaluation of these two notions of process

model similarity with node match similarity. We present an extensive evaluation

using a text-based search engine as a baseline for comparison in two dimensions.

First, the evaluation is done using classical measures of quality for ranked re-

trieval results, including mean average precision and first-10 precision. In this

evaluation, we compare the proposed similarity metrics with a text-based search

engine. Second, we give an account of performance evaluation, which suggests

that all proposed approaches are applicable in the envisaged use cases.

The remainder of the paper is structured as follows. Section 2 presents

the notation used to represent business process models. Section 3, 4 and 5
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present the label-based, structure-based and behavior-based similarity metrics

respectively. Section 6 presents the experimental evaluation. Finally, sections 7

and 8 present related work and conclusions.

2. Preliminaries

This section introduces notations and notions used in the rest of the paper.

Firstly, the section introduces the notion of a Business Process Graph (BPG),

which we will use as the formalism on which the similarity metrics are defined.

Secondly, it introduces the notion of causal footprint [3], which provides an

abstract representation of the behavior of a business process model. Causal

footprints will be used in section 5 in order to define the behavioral similarity

metrics. Thirdly, the section defines two similarity metrics for comparing pairs

of labels. The process model similarity metrics studied in the paper rely on

these similarity metrics in order to compare process model elements.

2.1. Business Process Graphs

Numerous notations compete in the business process modeling space, includ-

ing UML Activity Diagrams, the Business Process Modeling Notation (BPMN),

Event-driven Process Chains (EPCs), Workflow nets, and the Business Process

Execution Language (BPEL) – the latter one being intended for executable

specification rather than modeling. However, our aim is to define similarity

metrics that can be applied to all these different notations. To achieve this level

of generality, we define similarity metrics based on so-called Business Process

Graphs rather than on a specific notation. In this way, we also enable measuring

the similarity of business processes modeled in different notations.

A Business Process Graph (BPG) is simply a graph that captures node

and edge types of different notations as attributes. This definition is based

on the observation that, although many notations exist for modeling business

processes, most of them are graph-based. Even so-called structured modeling

languages, such as BPEL, can be trivially mapped to a graph-based notation as

discussed in [7]. Furthermore, there is a considerable overlap between existing
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languages [8]: all are based on activity nodes, and nodes with the same routing

behavior can be annotated with the same attributes, e.g. BPMN AND-gateways

and UML Activity Diagram forks. Finally, there are transformations available

for all relevant business process modeling languages to Petri nets [9]. For many

languages these transformations are complete while only a few of the constructs

cannot be directly expressed as, for instance, OR-joins. Yet, the behavioural

abstraction that we will use later, namely causal footprints, is even capable of

representing OR-joins. Therefore, if we define the similarity metrics on BPGs,

they can be used for all graph-based notations and even between different graph-

based notations.

Definition 1 (BPG). Let T be a set of types and Ω be a set of text labels. A
BPG is a tuple (N,E, τ, λ, α), in which:

- N is a finite set of nodes;

- E : N ×N is a finite set of edges;

- τ : (N ∪ E)→ T associates nodes and edges with a types;

- λ : (N ∪ E)→ Ω associates nodes and edges with labels; and

- α : (N ∪E)→ (T → Ω) associates nodes and edges with attributes, where
an attribute always is a combination of a type and a label;

Figure 1 shows an example of a business process model in the BPMN nota-

tion with the corresponding BPG. In process modeling notations different types

of nodes and edges are identified by different notational elements. For example,

in BPMN events are identified by circles, tasks by rounded rectangles,gateways

by diamonds, control flows by arrows and message flows by dashed arrows. In

BPGs the type of a node is identified by the function τ . In addition to that pro-

cess modeling notations allow various attributes to be associated with a node.

For example, in BPMN a task can be drawn inside a lane, identifying the role

that performs the task, and a multiple instance task can have an attribute that

defines the number of instances. In BPGs attributes are associated to a node

through the function α.

Figure 2 shows another example of a business process model and the corre-

sponding BPG. This example demonstrates the use of ‘typed edges’ to represent
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Figure 1: A Business Process Model and its Business Process Graph

relations other than the control flow relation, that can exist between nodes. In

process modeling notations different node relations can be represented in a num-

ber of different ways. For example, as illustrated in figure 2, the BPMN notation

allows for the use of containment to represent the relation between a subprocess

and the activities that are part of that subprocess. In addition to that it allows

for the use of events on the boundary of an activity to represent that the event

can interrupt the activity. In a BPG such relations cannot be represented in this

manner, because a BPG only contains nodes and edges. Therefore, we use edges

of different types to represent different relations between nodes. In figure 2 the

relation between a subprocess and its parts is represented by edges typed ‘con-

tained’ and the relation between an interrupting event and the activity that it

can interrupt is represented by an edge typed ‘target’.

Below we define our similarity metrics for business process graphs with an

arbitrary set of types T , such that the similarity metrics will work for any

graph-based notation. To also enable comparison between different graph-based

notations the set of types T must be standardized. For example, to enable

comparison between BPMN, UML Activity Diagrams and EPCs, the set of types

T should contain a type ‘task’ and the BPMN ‘Task’ type, the UML Activity
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Figure 2: A Business Process Model and its Business Process Graph with Typed Edges

Diagram ‘Activity’ type and the EPC ‘Function’ type should be mapped to

this type. Notation specific elements must be mapped to more general types

in a BPG before the similarity metrics can be applied to models in different

notations. We consider this mapping out of the scope of this paper. However,

we are pursuing related research in this direction [10].

In the remainder of this paper we will use the notions of path and typed

path to discuss the relations between nodes.

Definition 2 (Paths and Typed Paths). Let (N,E, τ, λ, α) be a BPG and a, b ∈
N be two nodes. A path a ↪→ b refers to the existence of a sequence of nodes
n1, . . . , nk ∈ N with a = n1 and b = nk such that for all i ∈ 1, . . . , k holds:
(n1, n2), (n2, n3), . . . , (nk−1, nk) ∈ E. This includes the empty path (i.e.: a ↪→ a
if (a, a) ∈ E). Let ts ⊆ T be a set of types. A path containing only nodes

n2, . . . , nk−1 that are of type t ∈ ts, denoted a
ts
↪→ b, is called a typed path. This

includes the empty typed path (i.e.: a
ts
↪→ a if (a, a) ∈ E).

2.2. Causal Footprints

A causality graph is a set of activities and conditions on when those activi-

ties can occur. Its intended use is as a formal semantics that approximates the
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behavior of a business process, in which case we also refer to it as the causal

footprint of that process. One of the advantages that causal footprints have over

other formal semantics (e.g. semantics in terms of a state-space or a trace-set)

is that causal footprints remain relatively small, while other formal represen-

tations are combinatorially large or even infinite when used to represent the

behavior of business process models [11]. This makes causal footprints more

practical for use in algorithms for which a response is required in a matter of

milliseconds (i.e. search algorithms). Note, however, that a causal footprint is

an approximation of the behavior of a business process, making it suitable only

for use in algorithms that do not require an exact behavioral semantics.

A causality graph represents behavior between a set of activities by means of

two relationships, namely look-back and look-ahead links. For a look-ahead link

from an activity to a (non-empty) set of activities, we say that the execution of

that activity leads to the execution of at least one of the activities in the set.

I.e. if (a,B) is a look-ahead link, then any execution of a is directly or indirectly

followed by the execution of some b ∈ B. Furthermore, for a look-back link from

a (non-empty) set of activities to an activity, we say that the execution of the

activity is preceded by the execution of at least one of the activities in the set.

I.e. if (A, b) is a look-back link, then any execution of b is directly or indirectly

preceded by the execution of some a ∈ A.

Definition 3 (Causality Graph). A causality graph is a tuple (A,Llb, Lla), in
which:

- A is a finite set of activities;

- Llb ⊆ (P(A)×A) is a set of look-back links1;

- Lla ⊆ (A× P(A)) is a set of look-ahead links.

A causality graph is a causal footprint of a business process if and only if it is

consistent with the behavior of that process. In the definition below we consider

the behavior as a set of traces A∗ over an alphabet A. This set of traces is not

needed for the computation of the causal footprint. The causal footprint merely

1With P(A), we denote the powerset of A, where ∅ 6∈ P(A).
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has to be consistent with that semantics. We refer to [3] for an algorithm to

compute a causal footprint of an EPC or Petri-Net. The causal footprint of a

BPMN model can be computed indirectly using the Petri-Net based semantics

of BPMN [12].

Definition 4 (Causal Footprint). Let (N,E, τ, λ, α) be a BPG and ts be the set
of types for which we build a causal footprint. Then A = {n|n ∈ N, τ(n) ∈ ts}
is the set of nodes for which we build the causal footprint. Furthermore, let
G = (A,Llb, Lla) be a causality graph over the set of nodes A, and W ⊆ A∗ be
the set of possible orders in which the nodes from A can be performed. G is a
causal footprint of the BPG if and only if:

1. For all (a,B) ∈ Lla holds that for each σ ∈ W with n = |σ|, such that
there is a 0 ≤ i ≤ n − 1 with σ[i] = a, there is a j : i < j ≤ n − 1, such
that σ[j] ∈ B,

2. For all (A, b) ∈ Llb holds that for each σ ∈ W with n = |σ|, such that
there is a 0 ≤ i ≤ n − 1 with σ[i] = b, there is a j : 0 ≤ j < i, such that
σ[j] ∈ A,

Note that the definition only develops a causal footprint for a subset of the

nodes in a BPG, because typically the behavioral semantics (i.e. the set of

possible orders in which the nodes are performed) is only defined on certain

types of nodes. For example, in BPMN the set of possible orders could be

defined in terms of tasks, or in terms of tasks and events.

As an example, a possible causal footprint for the business process model

from Figure 1, focusing only on tasks, has the look-ahead link (‘Receive Goods’,

{‘Verify Invoice’, ‘Transfer to Warehouse’}) and look-back links ({‘Receive

Goods’}, ‘Verify Invoice’) and ({‘Receive Goods’}, ‘Transfer to Warehouse’).

This example illustrates that causal footprints are an approximation of the be-

havior of a business process, because there are multiple business processes that

have the same causal footprint (for example, the business process that can be

derived from Figure 1 by transforming the parallel block in an choice block).

Also, there are multiple possible causal footprints for the same business process

model.

2.3. Similarity of Process Model Elements

When comparing business process models it is not realistic to assume that

their elements (nodes) are only equivalent if they have exactly the same la-
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Figure 3: Two customer inquiry processes

bel. Figure 3 is an example in point: tasks “Customer inquiry processing” and

“Client inquiry query processing” would be considered as practically identical

by a process modeler, although they have different labels. Therefore, as a ba-

sis for measuring the similarity between business process models, we must be

able to measure the similarity between their elements. We consider five ways of

measuring similarity between elements of different process models (see Figure 4):

1. Syntactic similarity, where we consider the syntax of labels,

2. Semantic similarity, where we look at the semantics of the words within

the labels, and

3. Attribute similarity, where we look at the attribute values, and

4. Type similarity, where we look at the node types, and

5. Contextual similarity, where we do not only consider the similarity of two

nodes, but also the context in which these nodes occur.

All these metrics (as described below) result in a similarity score between 0 and

1, where 0 indicates no similarity and 1 indicates identical elements. Hence, it

is trivial to combine all metrics to obtain a weighted similarity score.

We experimented with other metrics for determining the similarity of process

model elements, inspired by the work of Ehrig, Koschmider and Oberweis [13]
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Figure 4: Overview of different approaches to similarity of process model elements

and we also experimented with different parameters for the metrics presented

below. However, we obtained the best results for the metrics and parameters

explained below, based on an evaluation of different metrics to determine the

similarity between 210 pairs of process model elements [14].

2.3.1. Syntactic Similarity

Given two labels (e.g. the labels of two nodes or the labels of two node

attributes), the syntactic similarity metric returns the degree of similarity as

measured by the string-edit distance. The string-edit distance [15] is the number

of atomic string operations necessary to get from one string to another. These

atomic string operation include: removing a character, inserting a character or

substituting a character for another.

Definition 5 (Syntactic similarity). Let l, l1, l2 ∈ Ω be text labels. Furthermore,
let |l| be the length of a text label l and ed(l1, l2) be the edit distance of text labels
l1 and l2. We define the syntactic similarity of text labels l1 and l2, denoted
syn(l1, l2), as follows:

1− ed(l1, l2)

max(|l1|, |l2|)
Let (N1, E1, τ1, λ1, α1) and (N2, E2, τ2, λ2, α2) be two BPGs and let n1 ∈ N1

and n2 ∈ N2 be two nodes from those BPGs. We define the syntactic similarity
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of nodes n1 and n2 as follows:

Simsyn(n1, n2) = syn(λ1(n1), λ2(n2))

For example, the syntactic similarity between the events e12 and e21 from

Figure 3 with labels “Customer inquiry about product” and “Customer inquiries

about product” is 1 − 3
30 = 0.90, because the edit distance is 3 (“inquiries”

becomes “inquiry” by substituting the ‘y’ with a ‘i’ and inserting an ‘e’ and

an ‘s’). For comparing labels we disregard special symbols, such as newline,

brackets and quotes and we change all characters to lower-case.

2.3.2. Semantic Similarity

Given two labels, their semantic similarity score is the degree of similarity,

based on equivalence between the words they consist of. Hence, the semantic

similarity score is defined as follows.

Definition 6 (Semantic similarity). Let l, l1, l2 ∈ Ω be text labels, W be the
set of all words, w : Ω → P(W ) be a function that separates a label into a set
of words and s : W → P(W ) be a function returns the set of synonyms for a
given word (based on a dictionary lookup). Furthermore, let w1 = w(l1) and
w2 = w(l2) and let wi and ws be the weights that we associate with identical
words and synonymous words, respectively. We define the semantic similarity
of labels l1 and l2, denoted sem(l1, l2), as follows:

2 · wi · |w1 ∩ w2|+ ws(|
⋃

w∈w1−w2

s(w) ∩ (w2 − w1)|+ |
⋃

w∈w2−w1

s(w) ∩ (w1 − w2)|)

|w1|+ |w2|

Let (N1, E1, τ1, λ1, α1) and (N2, E2, τ2, λ2, α2) be two BPGs and let n1 ∈ N1

and n2 ∈ N2 be two nodes from those BPGs. We define the semantic similarity
of nodes n1 and n2 as follows:

Simsem(n1, n2) = sem(λ1(n1), λ2(n2))

For example, suppose we assign wi = 1.0 and ws = 0.75 and consider

the tasks t11 and t21 from Figure 3 with labels “Client inquiry query pro-

cessing” and “Customer inquiry processing”. These labels consist of the

collections of words w1 =[“Client”, “inquiry”, “query”, “processing”] and

w2 =[“Customer”,“inquiry”,“processing”], respectively. We only need to con-

sider a synonym mapping between w1 \w2 = [“Client”,“query”] and w2 \w1 =
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[“Customer”]. We consider “Customer” and “Client” synonymous and “Cus-

tomer” and “query” not synonymous. Therefore, the semantic similarity be-

tween w1 and w2 equals

sem(w1, w2) = 1.0·2+0.75·(1+0)
4 ≈ 0.69.

When determining equivalence between words, we disregard special symbols,

and we change all characters to lower-case. Furthermore, we skip frequently

occurring words, such as “a”, “an” and “for” and we stem words using Porter’s

stemming algorithm [16]. Stemming reduces words to their stem form. For

example, “stemming”, “stemmed” and “stemmer” all become “stem”.

In previous work [14] we established experimentally that wi = 1.0 and ws =

0.75 are adequate values. For this, we manually compared 210 function pairs

from the SAP Reference Model. For each pair, we determined if their labels

matched according to our own judgement. We then calculated the semantic

similarity score using different synonymy weight factors (0, 0.25, 0.5, 0.75 and

1). For each possible synonymy weight factor, we sorted the pairs according to

their calculated similarity score, and checked if those pairs that we had manually

identified as being “semantically equivalent” appeared at the top of the list.

Using the synonymy weight factor of 0.75, led to 90% of the pairs that we

manually tagged as semantically equivalent appearing at the top of the list.

2.3.3. Attribute Similarity

Given two nodes, we can determine their similarity of their attribute values.

The similarity of the attributes then is defined as the average of the similarity

of attributes of the same type.

Definition 7 (Attribute similarity). Let (N1, E1, τ1, λ1, α1) and
(N2, E2, τ2, λ2, α2) be two BPGs and let n1 ∈ N1 and n2 ∈ N2 be two
nodes from those BPGs. Furthermore, let s be one of the functions syn or sem.
We define the attribute similarity of nodes n1 and n2 as follows:

Simattr(n1, n2) = AVG
(t1,l1)∈α1(n1),

(t2,l2)∈α2(n2),t1=t2

s(l1, l2)

This similarity metric will most likely not be used by itself, because it ignores

the similarity of node labels, while similarity of node labels is typically a strong
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indication that the nodes themselves are similar. However, it can easily be

combined with the syntactic or semantic similarity metric.

2.3.4. Type Similarity

The similarity of two nodes largely depends on the similarity of their types.

In particular, it may be desirable to only consider the similarity of nodes in

case they are of the same type. Alternatively, the similarity of nodes that are

of a related type can also be considered, potentially to a lesser degree than

the similarity of nodes that are of the same type. For example, the similarity

of a node of type ‘send message’ and a node of type ‘receive message’ can be

considered to some specified degree, such that the similarity of the node with

type ‘send message’ and label ‘order’ and the node ‘receive message’ and label

‘order’ is 0.7. We define the following function to determine type similarity of

nodes.

Definition 8 (Type similarity). Let (N1, E1, τ1, λ1, α1) and (N2, E2, τ2, λ2, α2)
be two BPGs and let n1 ∈ N1 and n2 ∈ N2 be two nodes from those BPGs.
Furthermore, let typ : T × T → [0 . . . 1] be the function that assigns similarity
scores to pairs of types. We define the type similarity of the types of nodes n1

and n2 as follows:

Simtyp(n1, n2) = typ(τ1(n1), τ2(n2))

The function typ that defines the similarity of types has to be predefined as

desired. The simplest function is the function that only considers the potential

similarity of nodes in case they are of the same type:

typ(t1, t2) =

 1 if t1 = t2

0 otherwise

Like the attribute similarity function, is is not likely that this metric will be

used by itself. Instead, it can be used in combination with other metrics, such

that nodes with differing types automatically receive a lower (or zero) similarity

than nodes with the same type.

2.3.5. Contextual Similarity

The metrics defined above focus on the similarity of two process model el-

ements. We now define a fifth similarity metric that, when determining the
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similarity of two model elements, also takes the model elements that precede

and succeed them into account. Such a similarity metric is especially useful in

notations in which ‘active’ and ‘passive’ model elements are strictly alternat-

ing (i.e.: model elements that appear or do not appear in the set of execution

traces). This includes the EPC and the Petri net notation. In the EPC nota-

tion functions and events are strictly alternating and in the Petri net notation

transitions and places are strictly alternating.

We refer to preceding model elements as the input context and to succeeding

model elements as the output context of another model element. When deter-

mining the preceeding or succeeding model elements we may choose to ignore

certain types of modeling elements, such as gateways.

Definition 9 (Input and output context). Let (N,E, τ, λ, α) be a BPG and let
ts be the set of types of contextual elements that should be ignored. For a node

n ∈ N , we define the input context nin = {n′ ∈ N | n′ ts
↪→ n} and the output

context nout = {n′ ∈ N | n ts
↪→ n′}

To determine the contextual similarity between elements of a business pro-

cess model, we need to establish the equivalence between elements in their input

contexts and the equivalence between elements in their output contexts. We es-

tablish those equivalences by computing the equivalence mapping as defined

below. In this paper we always assume that an element can be mapped to

at most one other element. We do that to prevent explosion of possible rela-

tions between elements and therewith computational explosion of algorithms to

compute the metrics further on in this paper.

Definition 10 (Equivalence Mapping). Let (N1, E1, τ1, λ1, α1) and
(N2, E2, τ2, λ2, α2) be two BPGs. Furthermore, let Sim : N1 × N2 → [0..1]
be a similarity function. A partial injective mapping MSim : N1 9 N2 is an
equivalence mapping, if and only if for all n1 ∈ N1 and n2 ∈ N2: (n1, n2) ∈M
implies that Sim(n1, n2) > 0.

An optimal equivalence mapping Mopt
s : N1 9 N2 is an equivalence map-

ping, such that for all other equivalence mappings M holds that∑
(n1,n2)∈Mopt

Sim
Sim(n1, n2) ≥

∑
(n1,n2)∈MSim

Sim(n1, n2).

For example, in Figure 3 we can develop an equivalence mapping between

the sets {e12} and {e21, e22}, using syntactic similarity (syn) as a similar-
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ity function. Msyn = {(e12, e22)} is a possible equivalence mapping, because

syn(e12, e22) ≈ 0.24. Mopt
syn = {(e12, e21)} is the optimal equivalence mapping,

because syn(e12, e21) = 0.90. The only other possible mapping is the empty

mapping.

Now, we use the concept of equivalence mappings to determine the contex-

tual similarity between nodes.

Definition 11 (Contextual Similarity). Let (N1, E1, τ1, λ1, α1) and
(N2, E2, τ2, λ2, α2) be two BPGs and let n1 ∈ N1 and n2 ∈ N2 be two
nodes from those BPGs. Furthermore, let Sim be one of the similarity functions
from section 2.3.1, 2.3.2, or 2.3.3 and let ts be the set of types of contextual
elements that should be ignored. Furthermore, let Moptin

Sim : nin1 9 nin2 and

Moptout
Sim : nout1 9 nout2 be two optimal equivalence mappings between the input

and output contexts of n1 and n2, which ignore types from ts. We define the
contextual similarity that ignores types from ts as follows:

Simcon(n1, n2) =
|Moptin

Sim |
2 ·

√
|nin1 | ·

√
|nin2 |

+
|Moptout

Sim |
2 ·

√
|nout1 | ·

√
|nout2 |

In the remainder of this paper, we use Sim(n1, n2) to denote the similarity

value between two elements of a model. Any of the symmetric similarity func-

tions above (Simsyn, Simsem, Simattr, Simtyp or Simcon) can be substituted

for this, as well as any weighted combination thereof if the sum of weights is 1.

3. Node Matching Similarity

The first similarity measure we study, namely node matching similarity, is

based on pairwise comparisons of node labels or attributes. It is obtained by

calculating an optimal equivalence mapping between the nodes of the two pro-

cess models being compared (see illustration in Figure 5). The node matching

similarity score is the sum of the label similarity scores of the matched pairs

of nodes. To obtain a score between 0 and 1, we divide the sum by the total

number of nodes.

Definition 12 (Node Matching Similarity). Let B1 = (N1, E1, τ1, λ1, α1) and
B2 = (N2, E2, τ2, λ2, α2) be two BPGs, let Sim be a function that assigns a
similarity score to a pair of nodes and let ts be a set of types of nodes that
should be ignored. Furthermore, let Mopt

Sim : (N1 9 N2) be an optimal equivalence
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mapping derived from Sim, which ignores types from ts. The node matching
similarity between B1 and B2 is:

simnm(B1, B2) =
2 · Σ(n,m)∈Mopt

Sim
Sim(n,m)

|{n|n ∈ N1, τ1(n) /∈ ts}|+ |{n|n ∈ N2, τ2(n) /∈ ts}|

The node matching similarity metrics is parameterized by the similarity

metrics used to compare pairs of nodes. We can use the syntactic, semantic,

attribute, type or context similarity notions defined in Section 2.3, or a weighted

average of them. We further parameterize the node matching similarity metrics

with a threshold between 0 and 1. When calculating an optimal equivalence

mapping, we only allow two nodes to be included in the equivalence mapping if

their similarity is above the threshold. With respect to Definition 10, this means

that instead of enforcing that Sim(n1, n2) > 0, we enforce that Sim(n1, n2) ≥

threshold.

As an example, consider the process models from Figure 3. The optimal

equivalence mapping between these models, ignoring gateway types, is denoted

by the two-way arrows with the = symbol on them. Assuming that we use

syntactic equivalence (Simsyn) to determine the similarity between nodes, and

that we use a threshold of 0.5, the similarity score of the elements included in

the equivalence mapping is: Simsyn(e12, e21) = 0.90, Simsyn(t11, t21) ≈ 0.58

and Simsyn(t14, t22) = 1.00. The remaining elements are not included in the

equivalence mapping because the syntactic similarity score between all other

possible pairs of elements in this example is less than 0.5. Hence, the node

matching similarity between these two models is:

Figure 5: Illustration of node matching similarity calculation
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2 · Σ(n,m)∈Mopt
Simsyn

Simsyn(n,m)

|{n|n ∈ N1, τ1(n) /∈ ts}|+ |{n|n ∈ N2, τ2(n) /∈ ts}|
=

2 · (0.90 + 0.58 + 1.00)

6 + 4

4. Structural Similarity

The second similarity metric we study is a similarity metric over the structure

of a business process model. We define that metric based on the graph-edit

distance [2] of business process graphs (see Figure 6). The graph edit distance

between two graphs is the minimal number of graph edit operations that is

necessary to get from one graph to the other. Different graph edit operations

can be taken into account. We take into account: node deletion or insertion,

node substitution (a node is a graph is mapped to a node in the other graph

with a different label), and edge deletion or insertion.

Like the node matching similarity, graph-edit distance is obtained by first

computing a mapping between nodes and subsequently computing the optimal

graph-edit distance. This score is computed as follows.

- We consider two mapped nodes ‘substituted’. Their distance is one mi-

nus the similarity of their labels, because this value represents the effort

necessary to substitute one node (or rather its label) for the other.

- We consider an unmapped node either deleted or inserted.

Figure 6: Illustration of structural similarity calculation

18



- If there is an edge between two nodes in one graph, then we consider that

edge to exist in the other graph if and only if the nodes are mapped to

nodes in the other graph and there is an edge between the mapped nodes.

Otherwise, we consider the edge deleted or inserted.

Definition 13 (Graph Edit Distance). Let B1 = (N1, E1, τ1, λ1, α1) and B2 =
(N2, E2, τ2, λ2, α2) be two BPGs and let Sim be one of the similarity metrics
from subsection 2.3. Furthermore, let M : (N1 9 N2) be a partial injective
mapping.

Let n ∈ N1 ∪ N2 be a node. n is substituted if and only if n ∈ dom(M) or
n ∈ cod(M). sb is the set of all substituted nodes. n is inserted or deleted if
and only if it is not substituted. sn is the set of all inserted and deleted nodes.

Let (n,m) ∈ E1 be an edge. (n,m) is inserted in or deleted from B1 if
and only if there do not exist mappings (n, n′) ∈ M and (m,m′) ∈ M and
edge (n′,m′) ∈ E2. Edges that are inserted in or deleted from B2 are defined
similarly. se is the set of all inserted or deleted edges.

The distance induced by the mapping is defined as:

|sn|+ |se|+ 2 · Σ(n,m)∈M1− (Sim(n,m))

The graph edit distance is the minimal possible distance induced by a mapping
between the two processes.

As an example, consider the process models from Figure 3. Assuming that

we use syntactic similarity (Simsyn) to determine the similarity between nodes,

the distance of the mapping that is displayed in the Figure is: 13 + 19 + 2 · (1−

0.90 + 1− 0.58 + 1− 1.00) ≈ 33, 04.

The graph edit distance similarity is computed as one minus the average of

the fraction of inserted or deleted nodes, the fraction of inserted of deleted edges

and the average distance of substituted nodes.

Definition 14 (Graph Edit Distance Similarity). Let B1 = (N1, E1, τ1, λ1, α1)
and B2 = (N2, E2, τ2, λ2, α2) be two BPGs and let Sim be one of the similarity
metrics from subsection 2.3.

Furthermore, let M : (N1 9 N2) be the partial injective mapping that induces
the graph edit distance between the two processes and let sn and se be defined as
in definition 13. We define the graph edit distance similarity as:

simged(B1, B2) = 1− avg(snv, sev, sbv)

Where:
snv = |sn|

|N1|+|N2|
sev = |se|

|E1|+|E2|

sbv =
2·Σ(n,m)∈M1−Sim(n,m)

|N1|+|N2|−|sn|
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Variations of this metric are possible. The user of the technique can choose

the particular variation of the technique that must be used. One variation is

to use the weighted average, instead of the plain average, of the fractions of

skipped nodes, substituted nodes and skipped edges. If this variation is chosen,

the user must choose the appropriate weights. Another variation is to ignore

certain types of nodes. We ignore nodes by removing them from the BPG and

replacing paths through ignored nodes by direct edges.

Definition 15 (Node abstraction). Let B = (N,E, τ, λ, α) be a BPG, let Ω be
the set of all possible labels, T be the set of all types and let ts be the set of types
to ignore. The BPG in which the nodes of type t ∈ ts are ignored is the BPG
B′ = (N ′, E′, τ ′, λ′, α′), where:

- N ′ = {n|n ∈ N, τ(n) /∈ ts};

- E′ = (E ∩ (N ′ ×N ′)) ∪ {(n,m)|n,m ∈ N,n ts
↪→ m};

- τ ′ = τ ∩ ((N ′ ∪ E′)× T );

- λ′ = λ ∩ ((N ′ ∪ E′)× Ω); and

- α′ = α ∩ ((N ′ ∪ E′)× (T × Ω)).

For example, when using graph edit distance similarity on Figure 3, all

edges are inserted or deleted, leading to the maximal edit distance with respect

to edges. However, there are indirect edges from e12 to t11 and from t11 to t14

via gateway nodes. Therefore, one could argue that the edit distance is too

high (and therefore the edit distance similarity too low) and that insertion and

deletion of gateway nodes can lead to incorrect similarity measurements. This

issue can be addressed by ignoring all gateway nodes, but of course that would

mean that gateway nodes are not considered in the similarity metric at all.

5. Behavioral Similarity

The third similarity metric we study takes into account the behavior of

a process model. The benefit of using behavioral similarity over structural

similarity is illustrated by the point raised at the end of Section 4, namely that

indirect edges via the inserted or deleted nodes are not considered in structural

similarity, while they are relevant. In behavioral similarity indirect relations
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are considered (see Figure 7). For example in the behavior of the model from

Figure 3 there is a direct relation between event e12 and task t11 (i.e. e12 is in the

look-back link of t11), while there is only an indirect relation in their structure,

which is ignored in structural similarity and leads to a lower structural similarity

score.

We compute the behavioral similarity of two process models by computing

their distance in the document vector space constructed from their causal foot-

prints. Figure 8 illustrates this idea with a simple example. The figure shows

a vector space for two causal footprints, which both consist of a single look-

back link. The vector space has two axis, one for each look-back link. The

two causal footprints can be positioned inside this space (represented by the

dots) and subsequently their distance can be determined (represented by the

dashed line). The vector space consists of all look-back and look-ahead links

from both models. Consequently, if a node appears in one model but not in the

other, the similarity of the causal footprints is lowered, because the look-back

and look-ahead links for the node receive a score of 0 in the model in which the

node does not appear (and a 1 in the model in which the node does appear).

A document vector space consists of [17]:

- a collection of documents (two process models in our case);

- a set of index terms according to which the documents are indexed; and

- an index vector for each document, assigning a weight to each index term.

Figure 7: Illustration of behavioral similarity calculation
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Figure 8: Example vector space for two causal footprints

This leaves us to specify how index terms and index vectors are established in

our case. We derive the index terms from the sets of activities, look-ahead links

and look-back links of the causal footprints. However, where traditionally index

terms are the same for all documents, they can differ for two causal footprints.

In particular we use activities as index terms, but we want to consider that

activity labels can differ while still representing the same activity. For example,

the labels “enter client information” and “enter client’s information” differ with

respect to their labels, but could still be considered the same activity. Therefore,

we use the match between the nodes from the two BPGs (as it can be computed

using the metrics from the previous sections) as input for determining the index

terms and index vectors. We then determine the set of index terms as follows.

Definition 16. Let B1 and B2 be two BPGs with causal footprints G1 =
(A1, Llb,1, Lla,1) and G2 = (A2, Llb,2, Lla,2) and let M : A1 9 A2 be a partial
injective mapping that associates similar activities. We define the set of index
terms as: Θ = M ∪ (A1−dom(M))∪Llb,1∪Lla,1∪ (A2−cod(M))∪Llb,2∪Lla,2.
In the remainder we consider the sequence of index terms λ|Θ|.

For example, if we develop a causal footprint for the tasks from Figure 3

the set of index terms contains among others (t11, t21) from M , t12 from (A1 −

dom(M)), ({t11}, t12) from Llb,1 and (t11, {t12}) from Lla,1.

We determine the index vector for each BPG by assigning a weight to each

index term. An index term can either be a mapped activity, an unmapped

activity or a (look-ahead or look-back) link and we use different formulae to de-

termine the weight for different types of terms. There are many possible ways in
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which the formulae can be defined. For example, we can simply assign a mapped

activity the weight 1 and an unmapped activity the weight 0, but we can also

assign a mapped activity a weight that represents the quality of the mapping.

However, the approach to determine the best way of assigning the weights is to

propose a formula for assigning weights and experimentally establish whether

that formula performs better than the previous ones. After experimentation,

we got the best results when assigning weights as follows. (More information

about the experiments that we used can be found in section 6.)

- We assign an unmapped activity the weight 0.

- We assign a mapped activity a weight that represents the similarity with

the activity to which it is mapped, using one of the similarity functions

from section 2.3.

- We assign a link with a weight that exponentially decreases with the num-

ber of nodes in the link, using the rationale that links with fewer nodes

are more informative than links with more nodes.

Using these principles, we define the index vectors of the BPGs as follows.

Definition 17. Let B1 and B2 be two BPGs with causal footprints G1 =
(A1, Llb,1, Lla,1) and G2 = (A2, Llb,2, Lla,2), let M : A1 9 A2 be a partial in-
jective mapping that associates similar activities, let λ|Θ| be a sequence of index
terms as defined in definition 16 and let Sim be one of the formulae from subsec-
tion 2.3 that determines the node similarity of two mapped activity nodes. We
define the index vectors, −→g1 = (g1,1, g1,2, . . . g1,|Θ|) and −→g2 = (g2,1, g2,2, . . . g2,|Θ|)
for the two BPGs, such that for each index term λj, for 1 ≤ j ≤ |Θ| and for
each i ∈ {1, 2} holds that:

gi,j =



Sim(a, a′) if ∃(a, a′) ∈M
such that λj = a ∨ λj = a′

Sim(a,a′)
2|as| if ∃(as, a) ∈ Llb,i

such that λj = (as, a)
and (∃(a, a′) ∈M ∨ ∃(a′, a) ∈M)

Sim(a,a′)
2|as| if ∃(a, as) ∈ Lla,i

such that λj = (a, as)
and (∃(a, a′) ∈M ∨ ∃(a′, a) ∈M)

0 otherwise
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For example, if we use syntactic label similarity to compute similarity of

node pairs, then the index vector for the top BPG from Figure 3 assigns

Simsyn(t11, t21) ≈ 0.58 to index term (t11, t21) and Simsyn(t11,t21)
21 ≈ 0.29 to

index term (t11, {t12}).

Finally we can compute the behavioral similarity of the two BPGs, based

on their causal footprints, using the cosine of the angle between their index

vectors (which is a commonly accepted means for computing the similarity of

two vectors [17]) as follows.

Definition 18. Let B1 and B2 be two BPGs with index vectors −→g1 and −→g1 as
defined in definition 17. We define their causal footprint similarity, denoted
simcf(B1, B2), as:

simcf(B1, B2) =
−→g1 ×−→g2

|−→g1 | · |−→g2 |

Causal footprints do not capture the exact behavior of a process model but

rather an approximation. If we used an exact representation of the process

behavior – as captured by a Labelled Transition System (LTS) or a set of traces

– we would run into computational complexity issues. Computing the LTS of a

process model is exponential on the size of the model, and comparing two LTS

for equivalence (using weak or branching bisimulation) is also exponential [18].

A similar remark applies if we use traces, with the additional issue that the

set of traces of a process model with cycles is infinite. On the other hand, the

computation of causal footprints is exponential (on the number of gateways),

but the comparison between causal footprints can be done in linear time since

it involves a simple aggregation of two vectors. The calculation of the footprints

can be done incrementally when the business process models are added to the

repository, and afterwards, the search itself can be done in O(N ×M) where N

is the number of models and M is the size of the largest model.

6. Empirical Evaluation

In this section, we present an evaluation of the proposed similarity metrics in

the context of similarity search. In our context, the similarity search problem is
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defined as follows: Given a process model P (the query model) and a collection

of process models C (the document models), retrieve the models in C that are

most similar to P and rank them according to their degree of similarity. There

are at least two scenarios where similarity search is relevant:

1. Model repository maintenance: Before adding a model to a repository, a

process analyst may wish to check that a similar model does not already

exist, so as to prevent duplication and to take advantage of reuse oppor-

tunities. Similarly, a process analyst may wish to find out if a repository

contains overlapping models. Such overlaps are often introduced because

process analysts “copy/paste” existing model fragments when designing

new process models.

2. Model alignment and merging: In the context of company mergers, process

analysts need to find overlapping processes across the merged companies

in order identify opportunities for consolidation. Also, when deploying a

new Enterprise System into an organization, the existing process models of

the organization need to be compared with the “reference” process models

supported by the Enterprise System in order to identify overlaps.

In the first scenario, the query model and the document models are generally

designed by the same team of process analysts and using the naming conventions

and vocabulary of a given organization. As a result, the models are expected to

be homogeneous, meaning that the task labels used in the query models and in

the repository models are likely to be drawn from the same set. In the second

scenario, the query model and the document models are designed by entirely

independent teams. As a result, the task labels are heterogeneous. Below, we

evaluate the proposed similarity metrics in each of these scenarios.

6.1. Evaluation with Homogeneous Labels

For this evaluation, we used the SAP reference model: a collection of 604

business process models (described as EPCs) that represent the business pro-

cesses supported by the SAP ERP system. From this repository, we randomly
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extracted 100 business process models and tagged them as the “document mod-

els”. We then randomly extracted 10 models from these 100 models. These

models became the query models after undergoing the modifications described

below. The reason for modifying the query models was to study the effect of

different types of variations in labeling, structure and behaviour on the precision

and recall of the proposed metrics.

• query models 1 and 2 were left unchanged.

• query models 3 and 4 were modified by changing the labels of the functions

and the events of the original models into different labels that, to a person,

mean the same (e.g. change ‘evaluated receipt settlement’ into ‘carry out

invoicing arrangement’). This variation is intended to serve as a challenge

to label matching.

• query models 5 and 6 were modified by taking a subgraph of the original

model. For both models the subgraph was approximately half the size

of the original. This represents a structural variation while behaviour is

unchanged.

• query models 7 and 8 were modified by changing the connectors of the

original model into connectors of different types. Each connector was

changed to a random type that was different from the original type. This

is a behavioural variation with minimal structural impact.

• query models 9 and 10 were modified by re-ordering the functions and

events in the model. Re-ordering was done by random swaps of two func-

tions or of two events. This modification changes both structure and

behaviour.

We performed the experiments by applying each of the metrics defined in this

paper to perform a similarity search for each of the 10 query models. In other

words, each of the query models was compared with each of the 100 document

models and the results were ranked from highest to lowest similarity score.
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We then manually determined the relevance for each of the 1000 possible

(“query model”, “document model”) pairs. To this end, we rated the similarity

of each of the 1000 pairs on a 1 to 7 Likert scale. Pairs that received a score

of 5 or higher (“somewhat similar” to “very similar”) were considered relevant,

meaning that a query containing the “query model” should return the “docu-

ment model” in question. Since we did this rating ourselves, we had to establish

that there was no bias in our relevance judgments. To this end, we extracted a

subset of 50 pairs and presented them to 20 process modeling experts, asking

them to rate the similarity of each pair on the same Likert scale. We subse-

quently calculated the inter-rater dependency between our own judgement and

those of the 20 experts using the Pearson correlation coefficient. The correla-

tion was very strong (0.95 Pearson correlation coefficient) with 99% confidence,

showing that our judgment was consistent with that of other process modeling

experts.

At first glance, one could think that because the query models and the doc-

ument models are derived from the same collection, the results are predictable:

Each query model should have a high similarity with exactly one document

model and a low similarity with all other document models. However, this is far

from being the case because the SAP reference model contains many overlap-

ping processes. For example, there are 7 variations of the procurement process.

Overall, out of the 1000 (search model, document model) pairs, 108 pairs were

judged as “similar” or “very similar” during the manual inspection.

As a baseline for comparison, we used a text-based search engine (namely

the Indri search engine [19]). For each search and for each document model,

we derived a file containing the list of function and event labels appearing in

that model. We then loaded the document models into the search engine, and

submitted each of the query models to obtain a ranked list of document models.

Figure 9 and Table 1 summarize the results of the experiments. Figure 9

shows the average precision and recall scores across all the queries in the re-

call intervals [0 . . . 0.05〉, [0.05 . . . 0.15〉, [0.15 . . . 0.25〉, . . . , [0.95 . . . 1.0〉. Table 1

shows a more concise representation of the overall performance. For each metric
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recall precision recall precision recall precision recall precision recall precision

search engine behavioral similarity node similarity context matchingstructural similarity

0 1 0 1 0 1 0 1 0 1

0.0908391 0.902778 0.093622 1 0.093622 1 0.093622 1 0.093622 1

0.1908487 0.879762 0.192709 0.984615 0.192709 1 0.187449 0.955128 0.190249 1

0.3030908 0.902211 0.298779 0.935544 0.300395 0.974359 0.299786 0.983333 0.299786 1

0.4032221 0.851881 0.406217 0.946465 0.400456 0.969907 0.404417 0.972222 0.406217 1

0.5029586 0.815848 0.503497 0.947757 0.512019 0.955682 0.495804 0.820583 0.5 1

0.5989033 0.678213 0.600649 0.793134 0.602246 0.799094 0.598791 0.417293 0.585128 0.82342

0.6992848 0.571813 0.692818 0.725307 0.689548 0.706888 0.678037 0.321835 0.693512 0.913558

0.7968602 0.314693 0.79542 0.455786 0.796797 0.531052 0.806807 0.284032 0.798922 0.436852

0.8835194 0.25825 0.905888 0.330696 0.901741 0.317886 0.900394 0.214116 0.905969 0.309534

1 0.198719 1 0.171055 1 0.166857 1 0.132991 1 0.176027
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Figure 9: Precision-recall curve (precisions are averaged across all 10 queries)

Table 1: Overall results of experiments

mean average first 10 first 20
precision precision precision exec. time

search engine 0.76 0.70 0.46 826 ms
node matching 0.80 0.79 0.44 109 ms
structural similarity 0.83 0.78 0.48 208 ms
behavioral similarity 0.80 0.74 0.46 40 sec

it lists the mean average precision, this is the mean of the average precision of

each query model. The average precision for a given query is the average of the

precision scores obtained after each relevant document model is found [20]. The

table also lists the first 10 precision and the first 20 precision, which are the

precision for the first 10 or 20 search results, respectively. The graph and the

table show that on average, the metrics from this paper perform better than a

text-based search engine, thereby showing the use of such metrics.

Table 1 also shows the execution times observed when running all 10 queries

on the repository comprising all 100 document models. The tests were con-

ducted on a laptop with a dual core Intel processor, 2.53 GHz, 3 GB memory,

running Microsoft Vista and SUN Java Virtual Machine version 1.6. In order

to factor away one-off setup times, we ran the queries twice in a row and mea-

sured only the second run. The results show that the proposed techniques have

sub-second execution times, which is acceptable considering that overall 1000

comparisons need to be performed. The execution times of the search engine
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Figure 10: Average precision per query model

are greater than node matching and structural similarity. Closer examination

revealed that this is due to the fact that the search engine request requires a

call through the Java Native Interface, which implies dynamic code loading of

native code. The execution of the behavioral similarity metrics is significantly

higher than the other techniques, but as discussed in Section 5 this is because

of the time required to construct the causal footprint of each document model.

This computation can be performed incrementally as the document models are

inserted into a repository.

Figure 10 shows the average precision for each of the query models and

each of the metrics. The graph shows that the metrics defined in this paper

outperform text-based search engines when: (i) the query model is a subgraph

of the document models it is meant to match (query models 5 and 6); or (ii)

the query model and the document models it is meant to match, only differ in

the types of connectors employed (query models 7 and 8).

Looking more closely at the results gives an indication as to why the metrics

in this paper perform better when the query model is a subgraph of a document

model. Text-based search algorithms rank a document (model) higher when

a term from the search (model) appears more often. However, the metrics in

this paper rank a document model higher when a term (or rather a function or

event) from the document model appears in a frequency that is closer to the
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frequency with which it appears in the query model. For example, for query

model 1 the document model that was identical to the query model was only the

fifth hit in the text-based search algorithm, while it was the first hit both in the

structural similarity metric and in the behavioral similarity metric. This effect

is stronger in subgraph query models. For example, suppose that a query model

is about billing clients and that it only has a single function “bill client”. Also,

suppose that there are two document models: one that is about negotiating a

contract agreement, which contains the functions “negotiate with client”, “send

draft to client” and “send final offer to client”; and one that is about billing a

client for received goods, which contains the functions “ship goods” and “bill

client”. A text-based search algorithm would rank the first document model

higher, because the terms from the query model appear more frequently in that

document model. The search metrics from this paper would rank the second

document model higher, because there is a better match between functions in

that document model.

We now consider the effects of varying the parameters of the proposed node

similarity metrics. The node matching similarity metrics are parameterized

by a threshold. Two nodes can be matched only if their similarity is above a

given threshold. Furthermore, the similarity of two nodes can be determined

using syntactic, semantic, contextual or attribute similarity as explained in Sec-

tion 2.3. We tested the performance of these node similarity metrics for different

thresholds in the context of a structural similarity metric. The results of these

tests are shown in Figure 11. This graph plots the mean average precision of

different variants of node matching. The horizontal axis corresponds to differ-

ent values of the threshold. Three curves correspond to syntactic, semantic and

contextual similarity. The fourth curve corresponds to a similarity metric in

which syntactic similarity is counted for a factor 0.75 and contextual similarity

for a factor 0.25. The results for attribute similarity are not shown. We could

not test the performance of the attribute similarity metrics, because our dataset

did not contain any attributes. Testing the performance of this metric is left for

future work.
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Figure 11: Mean avg. precision of label matching variants

The graph shows that contextual similarity performs significantly worse than

the other forms of similarity. Consequently, contextual similarity can be used to

improve the performance of the other forms of similarity - as illustrated by the

curve that displays the combined syntactic / contextual similarity metric - but

it is not useful by itself. The graph also shows of the use of semantic similarity

improves the mean average precision of the technique only slightly.

We acknowledge that these results are dependent on the type of process

models being compared: In process repositories where the event and function

labels are standardized – e.g. based on the process classification framework of

the American Productivity and Quality Center2 – the use of approximate label

matching might be less crucial than in scenarios where significant variations in

terminology exist. We used these results to parameterize the process similar-

ity metrics. The average precision of the label matching technique shown in

Figures 9 and Figure 10 are those obtained using syntactic similarity only and

using a threshold of 0.5. We chose to use syntactic similarity with this setting,

because it works very fast. The algorithm for computing syntactic similarity

is much faster than that for semantic similarity because it does not have to do

dictionary lookups. In addition to that using a threshold of 0.5 excludes many

2http://www.apqc.org/
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potential node matches, while not significantly degrading performance.

Structural similarity has three parameters: the weight given to edge deletion

or insertion (eweight), the weight given to node deletions or insertion (vweight),

and the weight given to substitution of a node. We tested all combinations of

values of these three parameters between 0 and 1 in steps of 0.1 – i.e. (0, 0, 0),

(0, 0, 0.1), (0, 0, 0.2), . . . (0, 0.1, 0), (0, 0.2, 0), etc. For each combination, we mea-

sured the mean average precision across the 10 search queries. After analyzing

the results, we discovered a correlation between the parameter values: the best

results are obtained when the ratio (vweight+eweight)/sweight is between 0.2

and 0.8, with an optimum occurring when this ratio is between 0.4 and 0.5. In

other words, the best settings are those where substitutions are given twice the

weight of insertions and deletions. This trend is shown in the scatter plot in

Figure 12. Each point in the scatter plot represents one combination of param-

eter values. The y-coordinate of a point is given by the mean average precision

obtained for the combination of values in question, while the x-coordinate is

given by the ratio (vweight + eweight)/sweight.3 Clearly, the peak can be seen

on the left part of the graph between 0 and 1. The recall and mean average pre-

cision results for the structural similarity metrics previously shown in Figures 9

and 10 are those obtained with vweight = 0.1, sweight = 0.8 and eweight = 0.2.

6.2. Evaluation in Heterogeneous Labels

For the second evaluation, the query models were taken from the process

model repository of a large Dutch manufacturing company. These models were

related to procurement, logistics and order management processes. Although

we had a larger pool of query models available, we randomly extracted 10 query

models to keep the number of manual comparisons feasible. We then randomly

extracted 100 document models from the procurement, logistics and order man-

agement branches of the SAP reference model. We restricted ourselves to these

branches because they are aligned with the application domain of the query

3Combinations for which sweight is zero are not shown since the denominator of the ratio
is then zero.
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Figure 12: Mean avg. precision of structural similarity variants

models. The manual comparison between the query models and the document

models was performed by a team of students.

The query models were designed by a team of analysts without any knowl-

edge of the SAP reference model and using the naming conventions and vo-

cabulary of the company, which were different from those of the SAP reference

model. To assess the heterogeneity between the task labels in the query models

and those in the document models, we compared every task label in the query

models with every task in the document models. Among all pairs (query model

task label, document model task label) only 5% had a semantic similarity score

of greater than 0.5 in the heterogeneous dataset, as opposed to 16% in the

homogeneous dataset.

Figure 13 and Table 2 summarize the results of the experiments for the het-

erogeneous case. Figure 13 shows the precision-recall curve while Table 2 shows

the aggregate results. The results reported for the structural similarity corre-

spond to the best setting of vweight, eweight and sweight, and using syntactic

and semantic similarity combined. Other settings gave slightly less mean av-

erage precision, but still in the range 0.58-0.6 with only some extreme settings

giving lower accuracy. The results reported for node matching correspond to

the setting with a threshold of 0.5. The results obtained for node matching were

almost identical whether we used semantic and syntactic similarity combined,

33



0,4

0,6

0,8

1

1,2

Structural similarity

Search engine

Node matching

Behavioral similarity

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1 1,2

Structural similarity

Search engine

Node matching

Behavioral similarity

Figure 13: Precision-recall curve for heterogeneous models

Table 2: Aggregate results for heterogeneous models

mean average first 10 first 20
precision precision precision exec. time

search engine 0.53 0.55 0.54 610 ms
node matching 0.6 0.64 0.58 265 ms
structural similarity 0.6 0.65 0.61 283 ms
behavioral similarity 0.56 0.56 0.55 6 min

or syntactic similarity alone.

The accuracy of all techniques is significantly lower than for the first dataset.

This can be explained by the strong differences between the labels in the query

model and those in the document models. Notwithstanding this heterogeneity,

the similarity metrics described in this paper have better accuracy than the text-

based search engine. The node matching and structural similarity techniques

showed the best results – mean average precision of 0.6 for both techniques. The

fact that node matching and structural similarity give almost the same results

suggests that the topology of the graph is not as important as the number of

matches between nodes in the query model and nodes in the document models.

It appears that behavioral similarity performs less well on this dataset, sug-

gesting again that taking into account the topology of the model (and thus the

induced causal relations) does not add accuracy in the context of a heteroge-

neous dataset.

Table 2 also shows the execution times for computing the different similarity
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Figure 14: Average precision per query model for heterogeneous models

metrics, which are largely consistent with the performance results obtained for

the homogeneous dataset.

Figure 14 shows the average precision for each of the query models and

each of the metrics for the heterogeneous dataset. The graph shows that the

metrics defined in this paper outperform text-based search engines except in

two cases. A close examination of the two models where the text-based search

engine performed slightly better revealed that this models were smaller and

simpler than the other query models. For larger models, label and structural

similarity clearly outperform text-based search.

Overall, we can make the following observations:

• In the case where the query models and document models have labels ex-

tracted from the same space, the topology of the models and their induced

behavior adds accuracy to the search technique.

• In the case where the query models and the document models are hetero-

geneous, the number of matches between nodes adds accuracy but not the

topology or the induced behavior.

• In all cases, the proposed similarity metrics outperform a text-based search

engine, suggesting that process model repositories need specialized index-

ing and search techniques.
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7. Related Work

In this section we discuss related work in three areas: (i) behavior similarity

measurement (and in particular of behavior described in process models); (ii)

information retrieval in process model repositories; and (iii) schema matching.

Existing work on determining a degree of similarity between process mod-

els is rather scarce, even though related topics like process model integration

are well researched (see [21, 22, 23, 24, 25]). Also closely related are different

notions of behavioral equivalence such as trace equivalence and bisimulation.

While trace equivalence is based on a simple comparison of the sets of com-

pleted execution traces, bisimulation notions are stricter since they consider the

points in time when decisions are taken, e.g., weak bisimulation equivalence is

stricter than trace equivalence. A thorough overview of behavioral equivalence

notions is presented in [26]. The strict ‘true or false’ nature of these comparison

techniques has been criticized in [27] as not appropriate for various application

scenarios in the field of business process management. In addition, existing

techniques for behavioral equivalence checking are mainly based on state-space

analysis, which is computationally expensive: even the restricted class of 1-safe

Petri nets require exponential space for most equivalence notions [28]. In our

work, we avoid state space calculation by using causal footprints [29] as the basis

for comparison. Since causal footprints capture constraints instead of the state

space, this approach relates to constraint-based or property-based approaches to

process modeling and verification [30, 31, 32]. Comparable concepts are used in

[33] for service matching, an area where behavioral abstractions including inter-

faces [34], conversation protocols [7], behavioral signatures [35], and operating

guidelines [36] are used.

The particular contribution of our paper is that it presents and validates a

collection of similarity metrics. Most proposed business process similarity met-

rics either remain unvalidated, and do not take into account label similarity (by

assuming that equivalent tasks have equivalent labels) nor behavioral similarity

– focusing instead on structural similarity. Some work with all these feature has,
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though, been conducted for state charts and finite state automata. Nejati et

al. [37] propose a similarity metric for computing the similarity of statecharts. It

takes differences between labels of states into account and considers behavioral

similarity, using approximations of bi-similarity as well as the nested structure

of states in a statechart. Because of this latter feature, their technique is spe-

cific to statecharts. Their technique is validated using three pairs of statechart

specifications of telecommunication services. The focus of their evaluation is

not to determine the precision/recall of the technique as a search technique,

but rather as a technique for merging pairs of statecharts. Wombacher [38] also

empirically validates a number of metrics for measuring the similarity of work-

flows. His work focuses on workflows modeled using Finite State Automata and

uses a validation by comparison with human judgement. Unfortunately, the

approaches studied by Wombacher cannot be directly used for process models.

Even though reachability graphs (which are basically automata) can be derived

from process models, these can potentially be infinite or at least exponential in

size of the process model [11]. Also, the evaluation conducted by Wombacher is

not based on measures of precision or recall, but rather on the ability of different

methods to reproduce the judgement of human experts based on 23 queries with

a small number of possible solutions per query.

Other previous work deals with the comparison of business process models

that are captured in notations similar to EPCs or BPMN. Li, Reichert and Wom-

bacher [39] propose a structural approach to determine the similarity between

business process models. Their approach first determines ’atomic’ differences

between business process models and subsequently groups these differences us-

ing patterns that they have defined in earlier work [40]. They then compute a

similarity value based on the grouped differences. Their structural algorithm,

therefore, clearly differs from ours. However, in their paper, they do not provide

a validation of their algorithm, so it is not possible to compare their performance

to ours. In a similar vein, Minor et al. [41] use graph edit distance to find an

appropriate changed business process model in case a running business process

model needs to be changed. As a result it does not consider differences be-
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tween task labels, while our algorithm takes it into account. Lu and Sadiq [42]

introduce an algorithm for measuring similarity of process variants, based on

process model fragments. It is targeted towards querying collections of pro-

cess model variants for variants with certain features. These features can cover

other aspects than tasks and their relations, such as use of resources and timing

characteristics. In their work, van der Aalst et al. [27] calculate a degree of

behavioral similarity for measuring the fitness of a set of event logs relative to a

process model. This degree helps to optimize the match between model and log

in the area of process mining (see [43, 44]). Finally, Ehrig et al. [13] match task

labels based on structural and semantic properties, among other options using

WordNet synonyms [45]. While this technique is close to our semantic matching

technique, it has not been validated, but applied as a tool for recommendation

support [46].

The problem of process model similarity search can be related to that of

schema matching [47]. There are, however, important differences between pro-

cess models and schemas. Firstly, data models and schemas generally have

labelled edges (associations or schema elements) in addition to labelled nodes.

Secondly, the types of nodes and the attributes attached to nodes are different

in process models when compared to schemas or data models (e.g. there are no

control nodes in data models). During our experiments, we implemented a graph

matching technique originally designed for schema matching, namely Similar-

ity Flooding [48]. After adapting the technique to deal with process models, we

tested it on the dataset discussed in this paper using various parameter settings.

The similarity flooding technique led to a poor score – 0.56 of mean average pre-

cision for the best settings (with a first-10 precision of 0.6). We attribute this

poor performance to the fact that edges in process models lack labels, while

schema matching techniques, such as similarity flooding, heavily rely on edge

labels. Madhusudan et al. [49] introduce a structural metric for process model

comparison based on similarity flooding. However, Madhusudan et al. rely on a

semantic notation in which process models have labels attached to their edges.

Also, Madhusudan et al. did not validate their technique experimentally.
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Table 3: Overview of Related Work
Comparison Label Struct. Behav. Validation
between Sim. Sim. Sim.

this paper processes
√ √ √ √

Nejati et al. [37] state charts
√ √ √ √

Wombacher [38] finite state
√ √ √ √

machines
Li et al. [39] processes x

√
x x

Minor et al. [41] processes x
√

x x
Lu and Sadiq [42] processes x

√
x x

Van der Aalst log and
√

x
√

x
et al. [27] process
Ehrig et al. [13] processes

√ √
x x

Madhusudan processes
√ √

x x
et al. [49]

Table 3 summarizes features of related research in comparison to the work

reported in this paper. As can be seen, our paper provides a consolidation of

different approaches to similarity calculation and a respective validation.

Different models have been developed to exploit structure in text for in-

formation retrieval (see [50]) and some of these concepts have been applied to

process models. One example is the process query language (PQL) proposed in

[51] which uses a structured description of a process in terms of OWL classes

and attributes. Yet, in contrast to our work, the behavioral aspect of a process

is not considered. The same holds for other query approaches such as business

process query language (BPQL) by [52] or BPMN-Q by [53]. The work on the

definition of query languages is complementary to our work. Our work focuses

on optimal techniques for finding a good match based for a given query, where

the query is simply a process model or a part thereof. The work on query

languages focuses on defining a good language for specifying the query.

8. Conclusion

In this paper we presented three parameterized similarity metrics between

business process models:

1. node matching similarity metrics that measure similarity based on prop-
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erties of business process model elements, such as their labels and their

other attributes;

2. structural similarity metrics that measure similarity based on the proper-

ties of business process model elements, as well as the relations between

these elements; and

3. behavior similarity metrics that measure similarity based on the intended

behavior of process models.

The implementation of the proposed metrics can be found in the “similarity

plugin” of the ProM process mining and analysis framework.4

We experimentally evaluated the metrics by determining their precision and

recall. We compared the performance of these metrics with that of a text-based

search engine to establish a baseline of what process similarity metrics should

be able to achieve in order to be useful. Our expectation was, when taking

process structure and behavior into account, that process similarity metrics

should out-perform text-based search engines.

We tested our expectation, by applying the different metrics for similarity

search to two datasets. Both datasets consisted of 100 ‘document’ business

process models and 10 ‘search query’ business process models. In both cases we

used the 10 search queries to search the collection of documents, by returning

the documents in order of their similarity to the search queries. Subsequently

we used information retrieval metrics such as precision and recall to evaluate

the performance of the different similarity search metrics. However, in the first

dataset the search queries were obtained by taking 10 business process models

from the collection and modifying those models in predefined manner (e.g.: by

taking a sub-graph, or by replacing words in the labels by synonyms) to study

the effect of certain properties of search models on the performance of each

metric. In the second dataset the search queries where taken from a separate

collection of models. Consequently, the two datasets illustrate two sepate use

4Available at: http://prom.sourceforge.net.
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cases of similarity search techniques: one in which models are compared to

models from the same collection (e.g. searching for overlapping models) and one

in which models are compared to models from another collection (e.g. searching

for a reference model that matches an organization’s own model).

Both experiments showed that all three metrics that we defined indeed out-

perform a text-based search engine for process model similarity queries. This

was expected as the proposed metrics use knowledge of the structure and in-

tended behavior of business process models. In case search query models are

taken from the same collection as the document models, the structural similar-

ity metric slightly outperforms the others. In addition, there is evidence that

the metrics from this paper in particular perform better if the ‘search query’ is

a subgraph of one (or more) of the business process models in the collection,

if the ‘search query’ only differs from the document models it should match in

the types of gateways employed and if the ‘search query’ is relatively complex

in terms of the number of its elements.

In this paper, we focused on developing similarity metrics for comparing pairs

of process models, rather than efficient algorithms for similarity search. Still,

the experimental evaluation shows that we can perform 1000 comparisons (10

query models times 100 document models) in sub-second times, except for the

behavioral similarity metric. These results are encouraging, but in order to scale

up to repositories with several hundred or thousands of models, more scalable

techniques would be needed. A direction for future work is to design indexing

structures for scaling up the proposed similarity metrics to larger datasets.

Another direction for future work is to use the metrics that are defined

above to determine optimal mappings between the tasks of two similar business

processes. This requires that we allow mapping between sets of tasks, rather

than single tasks, because a set of tasks in one process may match with a set of

tasks in the other process. Research showed that this is common when the two

processes have been developed independent of each other [54].
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