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1. Abstract

Efimov physics is a description of three-body systems that has an infinite spectrum of
bound states for diverging scattering length. The theory predicts universal behavior that
depends only on the scattering length. Experiments, however, have shown discrepancies
from the predictions. The scattering length as only parameter in the models appears to
be insufficient to describe the whole process. The current models are based on a delta
potential and therefore do not depend on the range of the potential. In this paper we use
the finite square well potential to describe two-body scattering processes, both on-shell
as off-shell. This model can be used to describe the Efimov physics with a finite range
for the potentials.

The results have shown that the off-shell scattering amplitude shows significant
changes in completely different ranges for the wave number of the incoming and outgoing
wave. Some of the current models use a cut-off in the momentum space and make no
distinction between the cut-off for the two different waves. We have concluded that this
distinction is an important aspect to the scattering process and should there be made.
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2. Introduction

2.1 Efimov physics

Three-body physics has been excessively studies in different fields of physics. In the
field of nuclear physics a special state of three-particle systems was predicted in 1970 by
Efimov [2]. According to the theory the three-body system has infinitely many bound
states, if the two-body subsystems have an infinite scattering length. Such a bound state
of three particles is called a trimer. A state is 22.7 times larger than the previous that
and has an energy 22.72 = 515 times smaller than the previous. This number follows
from the mathematical equations and are independent of any parameters. The Efimov
effect was thought to have a universal behavior, which means that only the scattering
length of the two-body systems are of importance. Therefore the Efimov effect must
play a role in three-body systems of any kind. It was not until 2006 that the Efimov
states were experimentally observed, using caesium atoms [3].

Efimov states require an infinite scattering length of the two-body systems, which
can only be accomplished in the case where the particles are cooled down to microscopic
temperatures, where their kinetic energy approaches zero. This is the regime in which
quantum mechanics dominates. It is therefore obvious that the physics of these states is
hidden inside the Schrödinger equation. In figure ?? the properties of the Efimov
states are depicted, where the energy of the bound Efimov states is plotted as a function
of the inverse of the scattering length. The universal scaling factors 22.7 and 22.72 = 515,
the factor between the size and the energy of the consecutive, respectively, are shown
in the plot. Trimers can exist in the green area and in the purple area there can only
exist two-body systems, dimers, in combination with an unbound particle. The figure
implies that the green area is not bounded, but this is not the case. There is a ground
state that determines the minimal value of the scattering length at which a trimer can
form. In the grey area above the particles have kinetic energy and are unbound. It is
interesting to notice that for a positive scattering length the trimers can recombine into
an atom and a dimer, both gaining a lot of kinetic energy, while for a negative scattering
length no such process is possible. In this region there is no permitted state for a dimer,
while a trimer is permitted. However, when the trimer ”recombines”, all three particles
become unbound and the whole trimer falls apart. This situation can be compared to
the practical example of Borromean rings, where by removing one of the three rings, all
three rings become separated from each other.

When the Efimov states were first predicted, the related physics was thought to
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CHAPTER 2. INTRODUCTION

Figure 2.1: A plot of the energy of three of the infinite bound Efimov states as a function
of the inverse of the scattering length. The universal scaling of the size of the states
(factor 22.7) is indicated, as well as the universal scaling of the energy of the states
(factor 22.2 = 515). Three-body bound states can exist on the curved lines in the green
area. In the grey area to the right there are no permitted bound states.

behave universally. However, when it became possible to conduct experiments, it soon
was shown that there were some discrepancies [3]. In the first models the only parameter
was the scattering length and the scattering potentials were modelled as delta potential
wells, but this proved to be insufficient. In this thesis we investigate the process of
two-body scattering on a finite square well potential. After introducing a firm basis of
scattering theory, we first look at the so-called ”on-shell” scattering process, by which
elastic scattering processes can be described and then we find a way to describe the ”off-
shell” scattering process, which describes inelastic scattering processes. The off-shell
scattering process in two-body physics should first be understood in order to describe
Efimov states. The outcome of the two-body scattering on a finite square well can be
used to describe Efimov states, using a finite range of the potential. When a finite range
model is implemented in the Efimov states it can be investigated whether this extra
parameter is sufficient to match with the experimental values.

2.2 Feshbach resonance

In the previous section we stated that an infinite scattering length is necessary for
trimers to exist. Thus we need a mechanism that enables us to tune the scattering
length. Fortunately, such a mechanism is well known in the research field of cold atoms
and is known as Feshbach resonance. When the particles are in a weakly bound state,
they become resonant with other interaction channels, whereby the scattering length
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2.2. FESHBACH RESONANCE

diverges. In experiments this is done by applying a magnetic field to the system in such
a way that the particles are weakly bound. The magnetic field should be adjusted to the
energies due to Coulomb interaction, Zeeman splitting and hyperfine splitting. In this
thesis, however, we assume we can simply adjust the depth of the potential well, since
this technique is already mastered by experimenters.

In figure we see the scattering length, with background scattering, as function
of the magnetic field. The scattering length diverges for B = B0. The width of the
resonance is ∆. We will choose the depth of the potential in this thesis, so that the
scattering length matches the with diverging behavior.

Figure 2.2: The scattering length is plotted as a function of the applied magnetic field.
We aim at the green area, where the scattering length diverges. The width of the
resonance is denoted by ∆. For a magnetic field far from resonance the scattering
converges to the background scattering abg.
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3. Scattering theory

In this chapter we introduce the theory that is used during the thesis. First we
explain the theory of quantum scattering for two-body systems and the principle of
Feshbach resonance and later we unite the two concepts. Let us first take a look at the
theory of quantum scattering.

3.1 Lippmann-Schwinger equation

The time-independent Schrödinger equation can be written as

H|ψ〉 = E|ψ〉, (3.1)

in which H is the Hamiltonian operator and E is the energy of the system. Note that
the circumflex on the operators is omitted, and will be in the remainder of this article,
for convenience. The Hamiltonian consists of the the kinetic-energy operator H0 and
the potential operator V in such a way that

H = H0 + V. (3.2)

Let us now consider a particle residing in the presence of a potential well with a finite
range. When the particle is far enough from the potential, the Schrödinger equation can
be written as

H0|k〉 = E|k〉, (3.3)

since the potential has a negligible contribution to the energy of the particle. Here the
eigenvector |k〉 denotes the state of a plane wave with wave number k. According to
Sakurai[1] the complete Schrödinger equation can be written as

|ψ〉 =
1

E −H0
V |ψ〉+ |k〉, (3.4)

as the solution transforms into the equation 3.3 when the distance between the particle
and the potential is large and V therefore vanishes. This expression gives rise to a
singularity when E = H0. We can solve the problem by making the energy E slightly
complex and then we obtain the Lippmann-Schwinger equation in the form

|ψ(±)〉 = |k〉+
1

E −H0 ± iε
V |ψ(±)〉, (3.5)
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CHAPTER 3. SCATTERING THEORY

in which ε is an infinitesimal small number. Here |ψ(+)〉 (|ψ(−)〉) denotes state of the
outgoing (incoming) wave function.

Using the projection of the state of the wave function on the position basis we
obtain

|ψ(±)〉 = 〈x|k〉+

∫
d3x′〈x| 1

E −H0 ± iε
|x′〉〈x′|V |ψ(±)〉, (3.6)

in which x′ is used as a dummy variable. The projection of the plane wave state |k〉 on
the position basis is expressed by

〈x|k〉 =
eik·x

(2π)3/2
. (3.7)

According to Sakurai[1] the matrix element from equation 3.6 is given by

G± ≡
~
m
〈x| 1

E −H0 ± iε
|x′〉 = − 1

4π

e±ik|x−x
′|

|x− x′|
(3.8)

when the distance between the particle and the potential is large. ~ denotes the reduced
Planck’s constant andm denotes the mass of the two-body system. The result is obtained
by applying complex integrals.

Since we assume that the potential is local, we claim that

〈x′|V |x′′〉 = V (x′)δ3(x′ − x′′), (3.9)

so that we can express the last term in equation 3.6 as

〈x′|V |ψ(±)〉 =

∫
d3x′′〈x′|V |x′′〉〈x′′|ψ(±)〉 = V (x′)〈x′|ψ(±)〉. (3.10)

Now the total Lippmann-Schwinger equation becomes

〈x|ψ(±)〉 =
eik·x

(2π)3/2
− m

~2

∫
d3x

e±ik|x−x
′|

4π|x− x′|
V (x′)〈x′|ψ(±)〉. (3.11)

The projection of the wave function state on the position basis for large distances
between the particle and the potential can be expressed in terms of a plane wave and a
spherical wave, multiplied by a scattering amplitude f(k0,k) as follows

〈x|ψ(+)〉 = 〈x|k〉− 1

4π

m

~2
eikr

r

∫
d3x′e−ik

′·x′
V (x′)〈x′|ψ(+)〉 =

1

(2π)3/2

(
eik·x +

eikr

r
f(k0,k)

)
.

(3.12)

The scattering amplitude is given by

f(k′,k) = − 1

4π

m

~2
(2π)3

∫
d3x

e−ik
′·x′

(2π)3/2
V (x′)〈x|ψ(+)〉 = − 1

4π
(2π)3

m

~2
〈k′|V |ψ(+)〉. (3.13)

It is clear that the scattering amplitude contains all the information of the potential and
is therefore all we need to know.
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3.2. PARTIAL WAVE EXPANSION

3.2 Partial wave expansion

In Sakurai[1] an expansion has been derived for the scattering amplitude in terms
of wave functions with different angular momenta. The scattering amplitude is given by

f(k′,k) = f(θ, k) =

∞∑
l=0

(2l + 1)fl(k)Pl(cos θ), (3.14)

where θ is the angle between the wave vector of the incoming and outgoing wave. This
approach is only viable in the case of a complete elastic collision, which is called ”on-
shell” scattering. Now the length of the wave number of the incoming and outgoing
wave are equal, since the energies of both are equal in a complete elastic collision, and
is denoted as k.

Equation 3.6 can be written in terms of this partial wave expansion. According
to Sakurai[1] the equation becomes

〈x|ψ(+)〉 =
1

(2π)3/2

∞∑
l=0

(2l+ 1)
Pl(cos θ)

2ik

(
(1 + 2ikfl(k))

eikr

r
− e−i(kr−lπ)

r

)
. (3.15)

Thus, the potential only contributes to the outgoing part of the wave function for each
l. It is common to denote the amplitude of the outgoing part of the wave function for
each l as

Sl(k) = 1 + 2ikfl(k) (3.16)

and to call its sum over all l the S-matrix.
Because of the conservation of probability the amplitude of the total wave func-

tion, and therefore the amplitude of the all partial waves, should be conserved. Therefore
the relation

|Sl(k)| = 1 (3.17)

must hold. This means that the presence of a potential can only manifest itself in a
phase shift of the outgoing wave and Sl can be written as

Sl(k) = e2iδl , (3.18)

in which the factor 2 is introduced for convenience and 2δl(k) is the phase shift. A
relation can be found between equation 3.16 and equation 3.17, i.e.

fl(k) =
Sl − 1

2ik
(3.19)

and rewriting this equation after substituting equation 3.18 we get

fl(k) =
1

k cot (δl(k))− ik
. (3.20)
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CHAPTER 3. SCATTERING THEORY

3.3 Ultra-cold limit

In the ultra-cold limit particles occupy the state with the lowest energy, i.e. the
state with no angular momentum. Therefore we can simplify equation 3.14 by taking
l = 0, so it takes the form

f(θ, k) = f0(k). (3.21)

The scattering amplitude is thus independent of the angle between the outgoing and
incoming waves in the ultra-cold limit. Now we know that only one term of the partial
wave expansion contributes to the scattering amplitude, we know that the total scattering
amplitude becomes

f(k) =
1

k cot (δ0(k))− ik
. (3.22)
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4. Scattering amplitude of a finite square
well potential

Before we can calculate the scattering amplitude for the square well potential, we
need to define the S-matrix that represents the transformation of the outgoing spherical
wave. In the ultra-cold limit the S-matrix should only be dependent of the width of the
potential, r0, the depth of the potential, V0, and the incoming wave number k. In this
chapter we give analytic expressions, but also plots of the scattering amplitude and the
wave function. We try to model the scattering of Rubidium-87 atoms and we will use
its mass and its typical potential range, i.e. approximately 100 Bohr radii. Also, since
the solution for this two-particle scattering process is supposed to be used to describe
Efimov states, the scattering length of the system should approach infinity. We will find
a condition for a large scattering length and substitute it in the S-matrix.

4.1 Weakly bound state

An expression for the scattering length can be derived by solving the Schrödinger
equation for an extremely weakly bound state. The radial, time-independent Schrödinger
equation is given by

−~2

m

(
1

r2
∂

∂r

(
r2
∂ψ (r)

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ (r)

∂θ

)
+

1

r2 sin θ2
∂2ψ (r)

∂φ2
+ V (r)ψ (r)

)
= Eψ (r) ,

(4.1)

where m is the total mass of the system, i.e. two times the mass of the atom. Using
separation of variables we write the wave function as

ψ (r) = R(r)Y m
l (θ, φ), (4.2)

where R(r) is the radial part of the wave function and Y m
l (θ, φ) the angular part. Here

l is the orbital quantum number and m is the magnetic quantum number, which we
both choose to be zero, because we are working in the ultra-cold limit. The well-known
angular solution for l = 0 and m = 0 is given by

Y 0
0 =

√
1

4π
. (4.3)
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POTENTIAL

For the radial part we write u(r) = rψ(r) and the Schrödinger equation becomes

−~2

m

d2u(r)

dr2
= (E − V (r))u(r). (4.4)

The potential of the finite square well is given by

V (r) =

{
−V0 if r ≤ r0
0 if r > r0,

(4.5)

, where V0 is a positive value. The potential is divided into two intervals, where the
Schrödinger equation yields different solutions, so the wave function should be divided
into two intervals as well. For a weakly bound state the energy E is negative and small.
This means that the solution for u(r) will be a sum of a sine function and a cosine
function inside the potential and a decaying exponent outside the potential, i.e.

u(r) =

{
A1 cos(κ0r) +B1 sin(κ0r) if r ≤ r0
C1e

κr +D1e
−κr if r > r0,

(4.6)

where κ0 =
√

m(Ebound+V0)
~2 and κ =

√
mE
~2 . Ebound is chosen to be infinitesimally small,

since the wave function is extremely weakly bound. Since the radial solution is R(r) =
u(r)
r , we know that A1 = 0, because the cosine term would blow up to infinity. For

the same reason we can eliminate the growing exponent, because it would blow up for
r → inf. Now u(r) becomes

u(r) =

{
B1 sin(κ0r) if r ≤ r0
D1e

−κr if r > r0.
(4.7)

For the sake of continuity of the wave function and its first derivative, the solutions for
both intervals should yield the same result. Therefore we can derive the relation

u′(r0)

u(r0)
= κ0 cot(κ0r0) = −κ. (4.8)

Since the binding energy of the potential is expressed in terms of κ, this parameter
should have some relation with the parameters that define the potential. This relation
is derived further in the next section.

4.2 Scattering length

Let us now solve the Schrödinger equation for an unbound state with an infinitesimal
amount of positive energy. The Schrödinger equation does not change for the interval
inside the potential, but outside the potential it can be approximated by

d2u

dr2
= 0, (4.9)

10



4.2. SCATTERING LENGTH

since E → 0. The solution is

u(r) =

{
A2 sin(k0r) +B2 cos(k0r) if r ≤ r0
C2r +D2 if r > r0.

(4.10)

The solution outside the potential is a straight line, which can be understood by seeing
it as a sine with an infinitesimal wave number. Again we claim that B2 = 0, because
the cosine term would blow up.

The solution inside the potential does not differ from the one that has been
discussed in the prior section, because both the binding energy and the kinetic energy
are infinitesimally small and contribute nothing to the wave number inside the potential
well. This follows from

κ0 =

√
m

~2
(Ebound + V0) =

√
−κ2 +

mV0
~2
≈
√
mV0
~2

,

k0 =

√
m (E + V0)

~2
=

√
k2 +

mV0
~2
≈
√
mV0
~2

,

κ0 ≈ k0.

(4.11)

Now we define the value of r for which the wave function coincides with the x-axis for
the first time outside the potential as the scattering length, a, hence from equation 4.10
it follows that

u(a) = C2a+D2 = 0, a = −D2

C2
. (4.12)

The conditions for continuity of the wave function and its derivative, applied to equation
4.10 give

sin(k0r0) = C2r0+D2, k0 cos(k0r0) = C2, k0 cot(k0r0) =
1

r0 + D2
C2

=
1

r0 − a
= −κ, (4.13)

were we have used the relation k0 ≈ κ0 from equation 4.11. Inserting this relation in 4.8
we obtain√

κ2 +
mV0
~2

cot(

√
κ2 +

mV0
~2

r0) = −κ. (4.14)

This is a transcendental equation and therefore cannot be solved algebraically for κ, but
we can make an accurate approximation. Remember that we chose κ to be infinitesimally
small, thus we can neglect the contribution of κ to the square roots in this equation.
The scattering length can now be written as

a = r0 +
1

κ
, (4.15)

and by substituting equation 4.14

a = r0−
tan(

√
mV0
~2 r0)

mV0
~2

. (4.16)
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POTENTIAL

Figure 4.1: The scattering length of the potential as function of the potential depth, V0.
Each asymptote represents a bound state.

The scattering length is plotted in figure 4.1 as a function of the depth of the potential,
V0. Each vertical asymptote represents a bound state. Since we are interested in a
potential with two bound states, we should fix V0 at a value just after the second bound
state. The potential depth becomes

V0 =
~2

mr20
(
3π

2
)2ξ, (4.17)

where ξ is a slightly more than 1 and is further to be specified.

Now we have tuned all the parameters of the potential and we are ready to
determine its phase shift.

4.3 Phase shift due to the finite square well potential

In the previous section we have solved the Schrödinger equation for an unbound
state, by making use of the appromximation E ≈ 0. In this section we find the exact
solution for the Schrödinger equation, from which we can derive an expression for the
phase shift due to the potential.

The time-independent Schrödinger equation for this problem is(
− ~2

mr2
∂

∂r

(
r2
∂

∂r

)
+ V (r)

)
R(r) = ER(r), (4.18)

where the potential V (r) is given by

V (r) =

{
−V0 if r ≤ r0
0 if r > r0,

(4.19)

12



4.3. PHASE SHIFT DUE TO THE FINITE SQUARE WELL POTENTIAL

where r0 is the width of the potential. The Schrödinger equation should be solved in
the two different intervals independently. It follows that the wave function becomes

u(r) =

{
A1 sin(k0r) +A2 cos(k0r) if r ≤ r0
B1e

iδ0 sin(kr) +B2e
iδ0 cos(kr) if r > r0,

(4.20)

with R(r) = rψ(r), k0 the wave number of the particle inside the well, k the wave
number outside the well and A1,A2,B1 and B2 are normalisation factors. It follows that
A2 = 0 from the boundary condition that ψ = 0 and therefore R(r) = 0 at r = 0. For
the second interval there is no such condition we can use to cancel the sine or cosine
term. However, we can rewrite the sum of the sine and cosine as a sine with a phase
shift, as given by

u(r) =

{
A sin(k0r) if r ≤ r0
B sin(kr + δ0(k)) if r > r0,

(4.21)

Since the wave function and its derivative should be continuous at the point r = r0 we
have

sin(k0r0) = eiδ0 sin(kr0 + δ0(k)),

k0 cos(k0r0) = keiδ0 cos(kr0 + δ0(k)),
(4.22)

which, by dividing each other, we can transform into

k0 cot(k0r0) = k cot(kr0 + δ0(k)). (4.23)

Solving the equation for the phase shift yields

δ0(k) = −kr0 + arccot

(
k0
k

cot k0r0

)
. (4.24)

In order to obtain an expression for the phase shift in terms of tuneable param-
eters, we combine equation ?? and the first expression of equation 4.11 to find

κ0 =

√√√√ (3πξ2 )

tan(3πξ2 )2
+ (

3πξ

2r0
)2, (4.25)

which we can substitute in equation 4.24 via the last expression of equation 4.11 to
obtain

δ0(k) = −kr0+arccot


√

( 3πξ
2

)2

tan ( 3πξ
2

)
2 + (3πξ2r0

)2

k
cot

√√√√ (3πξ2 )2

tan (3πξ2 )
2 + (

3πξ

2r0
)2r0


 . (4.26)

Now we have all the ingredients we need to calculate the on-shell scattering
amplitude. However, we will first take a look at the normalisation of the exact solution
we have found in this section, because we will need it for checking the validity of the
on-shell scattering amplitude.
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4.4 Normalisation of the wave function

When we will find an expression for the scattering amplitude, we will have to
check its validity by comparing the wave function it gives with the exact solution of the
Schrödinger equation. Therefore we have to normalise the solution of the Schrödinger
equation first. Furthermore, normalisation is required to calculate the off-shell scattering
amplitude.

It is usual to normalise both the radial and the angular parts of the wave function.
However, we will add the normalisation factor of the angular part to the radial part, so
that Y m

l (θ, φ) = 1. Since we are considering an unbound state, the wave function cannot
be normalised in the normal way by demanding

∫
v ψ
∗ψdV = 1. In equation 3.5 we see

that the state vectors are represented in the k-space, so we should normalise the wave
function outside the potential by∫

k−space
〈ψk′ |ψk〉d3k = 1. (4.27)

Let us first calculate the inner product of the two wave functions with wave number k
and k′. The inner product is given by

〈ψk′ |ψk〉 =

∫
V
ψ∗ψdV = Bk′Bk

∫
V

sin (k′r + δ′0) sin (kr + δ0)

r2
dr. (4.28)

We can write the sines as complex exponentials, which gives

〈ψk′ |ψk〉 =
4πBk′Bk
−4

∫ ∞
0

((
eik

′r+δ′0 − e−(ik′r+δ′0)
)(

eikr+δ0 − e−(ikr+δ0)
))

dr. (4.29)

The integral of the exponentials can be simplified by using the formalism of the Dirac
delta function. The Dirac delta function can be expressed by

δ(x− a) =
1

2π

∫ ∞
−∞

eip(x−a)dp. (4.30)

However, we use spherical coordinates and therefore we integrate from zero to ∞. This
will give us

1

2
δ(x− a) =

1

2π

∫ ∞
−∞

eip(x−a)dp, (4.31)

based on the symmetry of the Dirac delta function. Now the inner product can be
written as

πBk′Bk

∫ ∞
0

(ei(k
′−k)r + ei(k−k

′))dr = −2π2Bk′Bk(δ(k −′ k + δ0 − δ′0)). (4.32)

Please note that we have neglected the terms ei(k+k
′+δ0+δ′0), since they would require

k = −k′ and therefore k = k′ = 0, since k and k′ are absolute values. This would give

14



4.5. ON-SHELL SCATTERING AMPLITUDE

rise to a non-physical situation. This can also be interpreted as integrating from ε to∞,
for which ε is an infinitesimal positive value. The delta functions do not depend explicitly
on δ0 and δ′0, since they are equal when k and k′ are equal. Integrating equation 4.27
gives

8π3Bk′Bk

∫ ∞
0

δ(k − k′ + δ0 − δ′0)k2dk = 1, (4.33)

which only holds for Bk = 1
(2π)3/2k

.

The wave function becomes

u(r) =

{
A sin (k0r) if r ≤ r0

1
(2π)3/2

eiδ0 sin (kr + δ0) if r > r0.
(4.34)

We can find the coefficient A by demanding using the boundary conditions again and
demand that both parts of the wave function have the same value at the boundary of
the potential. The expression for A is

A =
1

(2π)3/2
sin (kr0 + δ0)

sin (k0r0)
(4.35)

and now the exact solution for the wave function is given by

u(r) =

{
1

(2π)3/2
sin (kr0+δ0)
sin (k0r0)

sin (k0r) if r ≤ r0
1

(2π)3/2
sin (kr + δ0) if r > r0.

(4.36)

4.5 On-shell scattering amplitude

We now have all the ingredients to formulate an expression for the scattering am-
plitude of the potential. Substituting equation 4.26 in equation 3.22 from 3.3 gives

f =
1

k cot (−kr0 + arccot


√

(
3πξ
2 )2

tan (
3πξ
2 )

2+( 3πξ
2r0

)2

k cot

(√
( 3πξ

2
)2

tan ( 3πξ
2

)
2 + (3πξ2r0

)2r0

))− ik

.

(4.37)

A better representation of the scattering amplitude is given graphically in figure 4.2. We
have plotted the scattering amplitude for a rather arbitrary, but diverging value of the
scattering length. The potential depth is set to V0 = 1.56371 ∗ 10−26 and the resulting
scattering length is a = 450317r0. The scattering amplitude decreases for an increasing
wave number. This is exactly what we expect, because a wave with a high energy does
not notice much difference between the regions inside and outside the potential. The
wave number in this plot is expressed in 1

r0
, where a wave number of a particle at a

temperature of 10µK has a wave number of k = 0.313105
r0

.
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POTENTIAL

Figure 4.2: On-shell scattering amplitude as function of the incoming wave number, k.
The scattering length is chosen to be a = 450317r0.

An other characteristic of the scattering amplitude is its value for the limit
k → 0. The expression for the on-shell scattering amplitude from equation 3.22 contains
the term k cot (k0r0), which can be approximated from equation 4.23, since

k cot (kr0 + δ0) ≈ k cot (δ0). (4.38)

Using equations 4.8 and 4.15 the scattering amplitude becomes for k → 0

f(k → 0) =
1

−κ− ik
≈ 1

−κ
= r0 − a ≈ −a. (4.39)

We are allowed to make an approximation in the last step, because we have adjusted
the potential depth, so that a >> r0. The conclusion is that the scattering amplitude
should be equal to the scattering length in the limit k → 0. In section 4.2 we found
the value for the diverging scattering length. This is exactly the value the scattering
amplitude approaches in the limit for low k.

A last test for the on-shell scattering amplitude would be to substitute the
expression in equation 3.15 and compare it with the exact solution of the Schrödinger
equation, which was derived in the previous section. We should note that equation
3.15 is an approximation that only works at large distances from the potential. We
see exactly this behavior in figure 4.3, where the approximated wave function does not
resemble the exact solution of the Schrödinger equation for small values of r. However,
when directly outside the potential the two do coincide, thus the scattering amplitude
works fine. The figure also shows the behavior of the wave function at large distances
from the potential. In this region the wave function resembles a spherical wave with a
phase shift, as expected.

The on-shell scattering process of the finite square well potential can now be fully
described using the on-shell scattering amplitude. The next task is to find an expression
for the off-shell scattering amplitude, which is found in the next section.
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4.6. OFF-SHELL SCATTERING AMPLITUDE

(a) The absolute value of the wave func-
tion plotted near the potential for the ap-
proximation we have made using the scat-
tering amplitude and the exact solution of
the Schrödinger equation.

(b) The absolute value of the wave function
plotted further away from the potential for
the approximation we have made using the
scattering amplitude and the exact solution
of the Schrödinger equation.

(c) The absolute value of the wave function
plotted at a great distance from the poten-
tial for the approximation we have made us-
ing the scattering amplitude and the exact
solution of the Schrödinger equation.

Figure 4.3: The absolute value of the wave function as function of r is plotted for both
the exact solution of the Schödinger equation and the expression from equation 3.15, in
which we made use of the on-shell scattering amplitude. Three plots have been made at
different distances from the potential. The used scattering length is a = 450317r0.

4.6 Off-shell scattering amplitude

In section 3.1 we have found an expression for the scattering amplitude, given by
equation 3.13. Until now we have assumed that the incoming wave has the same wave
number as the the outgoing wave. This scattering process is called on-shell scattering and
only describes elastic scattering. However, in three-body systems inelastic scattering can
occur between two particles, because energy is not conserved in the two-body sub-system.
Inelastic scattering can be described by the so-called ”off-shell” scattering amplitude.
Efimov physics takes place in three body-system, so we want to derive an expression for
the off-shell scattering amplitude.

The expression in equation 3.13 can be written as

f(k′,k) =
−1

4π
(2π3)

m

~2
〈 k′|V |ψ(+)〉 = − 1

4π
(2π)3

m

~

∫
d3x

∫
d3x′〈k′|x′〉〈x′|V |x〉〈x|ψ(+)〉.

(4.40)
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Using the expressions from equations 3.9 and 3.7, we arrive at

f(k′,k) = − 1

4π
(2π)3

m

~

∫
V
d3xe−ik

′·xV (x)〈x|ψ(+)〉, (4.41)

which is nothing more than a Fourier transform over the range of the potential, V.
Writing out the inner product in the exponential empowers us to integrate over θ and
gives us

f(k′,k) =
1

4π
(2π)3

mV0
~

∫ 2π

0
dφ

∫ π

0
sin (θ)dθ

∫ r0

0
e−ik

′r cos (θ)〈x|ψ(+)〉r2dr =

−1

2
(2π)3

mV0
~k′

∫ r0

0
sin (k′r)〈x|ψ(+)〉rdr.

(4.42)

The expression we need for the wave function can be found in equation 4.36 and the
integral results in

f(k′,k) =
e−ikr0mV0(−k0 sin (k′r0) + k′ cos (k′r0) tan (k0r0))

(k0 − k′)kp(k0 + k′)~2(k0 − ik1 tan (k0r0))
, (4.43)

where we one should substitute the expression for k0 from equation 4.11. We have
omitted this substitution for the sake of keeping order in the expression. A three
dimensional plot of the off-shell scattering amplitude is shown in figure 4.4. We see
that the scattering amplitudes with a negative scattering length are more affected by
a change in the scattering length, as they show more oscillations on the same interval.
We also see that the scattering amplitude becomes more dependent on the wave number
of the incoming wave, k, as the absolute value of the scattering length decreases. This
can be explained by the fact that for a large scattering length the scattering process
is dominated by effect from the Feshbach resonance. When the scattering length is
decreased, these effects dominate less and the wave number of the incoming wave becomes
of more importance. The most interesting conclusion, however, is that the scattering
amplitude depends differently on the wave number of the incoming wave number than
on the wave number of the outgoing wave function. Interesting changes in the scattering
amplitude occur for values of the wave number of the incoming wave function of the
order of 109 times smaller of the outgoing wave. This is especially interesting, because
many models used today use a cut-off range in the momentum-space and the cut-off
is normally considered to be equal for the incoming and the outgoing wave function.
This figure shows that this is not the case. Future models can take this difference into
account.

To see the consequences of the off-shell scattering, we have plotted the wave
function as result of an on-shell scattering process and as result of an off-shell scattering
process in the same graph in figure ??, where we have chosen the wave number of the
outgoing wave to be 1.2 times larger than the wave number of the incoming wave in
the first plot and k′ = 1.05k in the second plot. We see, as one would expect, that
the wave functions have a phase shift and amplitude shift compared to each other. We

18
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can check for validity of our off-shell scattering amplitude by letting k′ approach k. We
can conclude from figure ?? that the off-shell scattering amplitude indeed describes the
correct on-shell scattering when k′ → k.
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(a) The absolute value of the scattering am-
plitude as function of k and k′ for a scatter-
ing length a = −10000r0.

(b) The absolute value of the scattering am-
plitude as function of k and k′ for a scatter-
ing length a = 10000r0.

(c) The absolute value of the scattering am-
plitude as function of k and k′ for a scatter-
ing length a = −1000r0.

(d) The absolute value of the scattering am-
plitude as function of k and k′ for a scatter-
ing length a = 1000r0.

(e) The absolute value of the scattering am-
plitude as function of k and k′ for a scatter-
ing length a = −100r0.

(f) The absolute value of the scattering am-
plitude as function of k and k′ for a scatter-
ing length a = 100r0.

(g) The absolute value of the scattering am-
plitude as function of k and k′ for a scatter-
ing length a = 0.

Figure 4.4: The absolute value of the scattering amplitude as function of k and k′ for
various scattering lengths. Scattering amplitudes with a negative scattering length are
shown on the left and scattering amplitudes with positive scattering lengths are shown
on the right.
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(a) Comparison of the wavefunction due
to an on-shell(red) and an off-shell(purple)
scattering process for k′ = 1.2k.

(b) Comparison of the wavefunction due
to an on-shell(red) and an off-shell(purple)
scattering process for k′ = 1.05k.

Figure 4.5: Comparison of the wavefunction due to an on-shell(red) and an off-
shell(purple) scattering process.
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5. Conclusion and Outlook

Using a simplified version of Feshbach resonance we are able to describe the scat-
tering processes on a finite square well potential in cold gases for diverging scattering
length. The finite range of the scattering potential may give better predictions for the
behavior of Efimov states.

The on-shell scattering amplitude, which contains all the information of the
scattering process, is able to describe elastic scattering processes due to the potential.
When the wave number of the incoming wave function approaches zero, the scattering
amplitude is equal to the scattering length. A common approximation that is used for
the scattering length, given in equation 4.15 fits the scattering length, that can be derived
from the scattering amplitude, well. The exact solution of the Schrödinger equation is
also in accordance with the wave function we obtain from the scattering amplitude.

We have found an expression for the off-shell scattering amplitude that is consis-
tent with the on-shell amplitude when the wave number of the incoming and outgoing
wave become equal. The dependence of the wave number of incoming and outgoing
wave functions on the off-shell scattering amplitude shows some interesting behavior,
i.e. the values for which the scattering amplitude shows significant changes differ with a
factor 109 between the two wave numbers. Many models today use a cut-off for for the
scattering amplitude in momentum space for both wave numbers. It is usual to make
no distinction between the two, but we have concluded that this distinction should be
made.

In Efimov physics the two-body interactions can be used to describe the three-
body system. There are various models that try to justify the non-universal behavior
of the Efimov states, such as describe by Rademaker [4]. The next step would be
to implement the off-shell scattering amplitude in Rademaker’s model to try to find
predictions that match the observed non-universal behavior.
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