3,068 research outputs found

    Indirect effects of invasive species affecting the population structure of an ecosystem engineer

    Get PDF
    Species invasion is of increasing concern as non-native species often have negative impacts on ecosystems that they were introduced to. Invaders negatively affect the abundance of native species due to direct interactions like predation and competition. Additionally, invaders may benefit native biota by imposing indirect effects on resident species interactions. Invaders indirectly affect resident species via both density-mediated indirect interactions (DMIIs) and trait-mediated indirect interactions (TMIIs). Previous studies on these different indirect interactions have largely examined the effects on structuring ecological systems, with paying little attention to the role of body size. Here, we experimentally demonstrate that an invasive habitat modifier of European coastal waters, the Pacific oyster (Crassostrea gigas), alters the population structure of native mussels (Mytilus edulis) by modifying the size specific predator-prey interaction between the mussels and the shore crab (Carcinus maenas). In laboratory split-plot experiments, the presence of Pacific oysters reduced the mortality of unconditioned mussels as well as mussels that were acclimatized in presence of predatory cues, while being exposed to predation by crabs of two different size classes. The reduction in mortality was size-dependent both in terms of the predators and the prey. The presence of oysters notably reduced mussel mortality in presence of small crabs, while the mortality rate in presence of big crabs was less affected. Mussels that benefited the most by the presence of oysters were those of recruitment stages, smaller than 20 mm in shell length. Our results suggest that oysters cause a strong shift in the population structure of M. edulis, reducing particularly the mortality of smaller sized mussels

    Longtitudinal electron beam diagnostics via upconversion of THz to visible radiation

    Get PDF
    Longitudinal electro-optic electron bunch diagnostics has been successfully applied at several accelerators. The electro-optic effect can be seen as an upconversion of the Coulomb field of the relativistic electron bunch (THz radiation) to the visible spectral range, where a variety of standard diagnostic tools are available. Standard techniques to characterise femtosecond optical laser pulses (auto- and cross-correlators) have led to the schemes that can measure electron bunch profiles with femtosecond resolution. These techniques require, however, well synchronized femtosecond laser pulses, in order to obtain the desired temporal resolution. Currently, we are exploring other electro-optic variants which require less advanced laser systems and will be more amenable to beam based longitudinal feedback applications. The first results of one such new scheme will be presented in this paper

    Short-Term Hyperglycemic Dysregulation in Patients With Type 1 Diabetes Does Not Change Myocardial Triglyceride Content or Myocardial Function

    Get PDF
    OBJECTIVE—To evaluate the effects of hyperglycemia due to partial insulin deprivation on myocardial triglyceride (TG) content and myocardial function in patients with type 1 diabetes

    Characterization of the fundamental properties of wireless CSMA multi-hop networks

    Get PDF
    A wireless multi-hop network consists of a group of decentralized and self-organized wireless devices that collaborate to complete their tasks in a distributed way. Data packets are forwarded collaboratively hop-by-hop from source nodes to their respective destination nodes with other nodes acting as intermediate relays. Existing and future applications in wireless multi-hop networks will greatly benefit from better understanding of the fundamental properties of such networks. In this thesis we explore two fundamental properties of distributed wireless CSMA multi-hop networks, connectivity and capacity. A network is connected if and only if there is at least one (multi-hop) path between any pair of nodes. We investigate the critical transmission power for asymptotic connectivity in large wireless CSMA multi-hop networks under the SINR model. The critical transmission power is the minimum transmission power each node needs to transmit to guarantee that the resulting network is connected aas. Both upper bound and lower bound of the critical transmission power are obtained analytically. The two bounds are tight and differ by a constant factor only. Next we shift focus to the capacity property. First, we develop a distributed routing algorithm where each node makes routing decisions based on local information only. This is compatible with the distributed nature of large wireless CSMA multi-hop networks. Second, we show that by carefully choosing controllable parameters of the CSMA protocols, together with the routing algorithm, a distributed CSMA network can achieve the order-optimal throughput scaling law. Scaling laws are only up to order and most network design choices have a significant effect on the constants preceding the order while not affecting the scaling law. Therefore we further to analyze the pre-constant by giving an upper and a lower bound of throughput. The tightness of the bounds is validated using simulations

    Optimizing spontaneous parametric down-conversion sources for boson sampling

    Get PDF
    An important step for photonic quantum technologies is the demonstration of a quantum advantage through boson sampling. In order to prevent classical simulability of boson sampling, the photons need to be almost perfectly identical and almost without losses. These two requirements are connected through spectral filtering, improving one leads to a decrease of the other. A proven method of generating single photons is spontaneous parametric downconversion (SPDC). We show that an optimal trade-off between indistinguishability and losses can always be found for SPDC. We conclude that a 50-photon scattershot boson-sampling experiment using SPDC sources is possible from a computational complexity point of view. To this end, we numerically optimize SPDC sources under the regime of weak pumping and with a single spatial mode

    Applicability and accuracy of an intraoral scanner for scanning multiple implants in edentulous mandibles:A pilot study

    Get PDF
    Statement of problem. In the past 5 years, the use of intraoral digitizers has increased. However, data are lacking on the accuracy of scanning implant restorative platforms for prosthodontics with intraoral digitizers. Purpose. The purpose of this clinical pilot study was to assess the applicability and accuracy of intraoral scans by using abutments designed for scanning (scan abutments) in edentulous mandibles. Material and methods. Twenty-five participants with complete mandibular overdentures retained by 2 implants and frameworks were included in this study. Scan abutments were placed on the implants intraorally and scanned with the iTero intraoral scanner. Also, scan abutments were placed on the implant analogs of the definitive casts and scanned with an extraoral laboratory scanner (Lava Scan ST scanner). Two 3-dimensional computer-aided design models of the scan abutments with predetermined center lines were subsequently imported and registered, together with each of the scanned equivalents. The distance between the centers of the top of the scan abutments and the angulations between the scan abutments was assessed. These values were compared with the measurements made on the 3-dimensional scans ofthe definitive casts, which were the participants' original definitive casts used for fabrication of soldered bars. The threshold for distance error was established to be 100 mu m. Results. Four of the 25 intraoral scans were not suitable for research because the intraoral scanner was not able to stitch the separate scans together. Five of the 21 suitable scans demonstrated an interimplant distance error >100 Rm. Three of the 25 intraoral scans showed interimplant angulation errors >0.4 degrees. Only 1 scan showed both an acceptable interimplant distance ( Conclusions. Based on the intraoral scans obtained in this study, distance and angulation errors were too large to fabricate well-fitting frameworks on implants in edentulous mandibles. The main reason for the unreliable scans seemed to be the lack of anatomic landmarks for scanning

    The interpretation of Dutch direct speech reports by Frisian-Dutch bilinguals

    Get PDF
    Frisian and Dutch both have a direct speech reporting construction and an indirect speech reporting construction with verb final word order. Frisian also has an additional indirect speech reporting construction, the embedded verb-second construction which resembles direct speech in many respects. We investigated whether Frisian-Dutch bilinguals show negative transfer in their interpretation of direct speech in Dutch. We hypothesized that Frisian-Dutch bilinguals would rate an infelicitous embedded V2 construction in Dutch as higher than Dutch monolinguals. Further we hypothesized that when tested on their interpretation of direct speech reports in Dutch, Frisian-Dutch bilinguals would make more errors than their monolingual Dutch counterparts. Our results support both hypotheses
    corecore