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Individual differences in foraging site fidelity are not
related to time-activity budgets in Herring Gulls

SUSANNE VAN DONK,1* JUDY SHAMOUN-BARANES,2 WILLEM BOUTEN,2 JAAP VAN DER MEER1 &
KEES C. J. CAMPHUYSEN1

1Department of Coastal Systems, NIOZ Royal Institute for Sea Research and Utrecht University, PO Box 59, 1790
AB, Den Burg, Texel, The Netherlands

2Theoretical and Computational Ecology, IBED, University of Amsterdam, Science Park 904, 1090GE, Amsterdam,
The Netherlands

Many populations consist of individuals that differ consistently in their foraging beha-
viour through resource or foraging site selection. Foraging site fidelity has been reported
in several seabird species as a common phenomenon. It is considered especially beneficial
in spatially and/or temporally predictable environments in which fidelity is thought to
increase energy intake, thereby affecting time-energy budgets. However, the conse-
quences for activity and energy budget have not been adequately tested. In this paper,
we studied the consequences of fine-scale foraging site fidelity in adult Herring Gulls
Larus argentatus in a highly predictable foraging environment with distinct foraging
patches. We measured their time-activity budgets using GPS tracking and tri-axial accel-
eration measurements, which also made it possible to estimate energy expenditure. Indi-
vidual variation in foraging site fidelity was high, some individuals spending most of their
time on a single foraging patch and others spending the same amount of time in up to
21 patches. While time and activity budgets differed between individuals, we found no
clear relationship with foraging site fidelity. We did find a relationship between the size
of the birds and the level of site fidelity; faithful birds tend to have a larger body size.
Although differences in foraging time and habitat use between individuals could play a
role in the results of the current study, short-term consequences of variation in foraging
site fidelity within a population remain elusive, even when focusing on individuals with
a similar foraging specialization (Blue Mussels Mytilus edulis). Studying individuals over
multiple years and under varying environmental conditions may provide better insight
into the consequences and plasticity of foraging site fidelity.

Keywords: accelerometer, behavioural consistency, bio-logging, central-place forager, energy
expenditure, fine-scale foraging behaviour, GPS tracking, seabird.

Many populations consist of individuals that differ
consistently in their food choice and foraging strat-
egy. A common form of such variation is foraging
site fidelity, where some individuals exploit a more
limited set of foraging sites than others (Switzer
1993, Bradshaw et al. 2004, Piper 2011, Wakefield
et al. 2015, McIntyre et al. 2017, Patrick &
Weimerskirch 2017). Despite the important role
of site fidelity in space use, proximate causes and

associated fitness consequences have only been
reported in a few cases (Piper 2011). Site fidelity
may increase energy intake and thereby affect
time-activity budgets. For example, site-faithful
individuals could reach higher energy intake rates
through improved local knowledge about the qual-
ity and availability of prey (Irons 1998, Hamer
et al. 2001). In addition, foragers will become
acquainted with their immediate competitors
when the majority of them are also site-faithful,
and eventually spend less time on aggression and
interference competition (Eason & Hannon 1994,
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Leiser & Itzkowitz 1999, Wolf & Trillmich 2007),
while leaving more time for self-maintenance or
investing in offspring.

The occurrence of foraging site fidelity has been
related to characteristics of the environment and
resources within it. For fidelity to be an advanta-
geous strategy, prey should be spatially and/or
temporally predictable and not likely to be
depleted (Andersson 1980, Irons 1998, Arthur
et al. 2015). However, even when environments
seem to be predictable and have abundant
resources, some animals within the same popula-
tion show a low degree of site fidelity (Piper 2011,
Patrick & Weimerskirch 2014, Wakefield et al.
2015, McIntyre et al. 2017). This raises the ques-
tion of whether there are negative consequences of
having lower site fidelity for time-energy budgets.
Foraging site fidelity has been widely reported in
seabirds at coarse to mesoscale scales (tens to hun-
dreds of kilometres) (Irons 1998, Weimerskirch
2007, Wakefield et al. 2015) and at a finer scale
(< 10 km) (Kotzerka et al. 2011). However, the
relationship between site fidelity and time-energy
budgets has barely been studied in these systems.

Understanding the extent to which individual
differences in site fidelity influence time-energy
budgets can be extremely challenging in free-ran-
ging birds. For example, foraging site fidelity could
be a consequence of specialization in diet or habitat
(Woo et al. 2008, Wakefield et al. 2015) or
demands on time, energy and food quality may
change during the annual cycle and subsequently
affect foraging site fidelity (Annett & Pierotti 1989,
Votier et al. 2017). Some of these factors can be
accounted for when working with systems that have
been extensively studied. One well-studied species
of seabird is the Herring Gull Larus argentatus. Her-
ring Gulls, like many other Larus species, are diet-
ary generalists on the species level, but individuals
have different foraging strategies (Morris & Black
1980, Gorke & Brandl 1986, McCleery & Sibly
1986, Pierotti & Annett 1990, Irons 1998). Herring
Gulls breeding on the island of Texel, the Nether-
lands, forage during incubation mainly on a pre-
dictable and abundant resource, Blue Mussels
Mytilus edulis (Camphuysen 2013, Van Donk et al.
2017). These mussels grow on breakwaters which
are human-made coastal defence structures. Break-
waters form discrete foraging patches which are lin-
early arranged and equidistant from each other,
with similar resource quality and quantity between
patches. This provides an opportunity to study

individual differences in foraging behaviour and
consequences of site fidelity while foraging on the
same predictable resource.

We studied foraging site fidelity and time-activ-
ity budgets of adult breeding gulls during the incu-
bation period, in which both sexes are involved
equally, for three reasons. First, we focus on incu-
bation to control for possible changes in demands
during different breeding phases. Second, we can
control for differences in diet by selecting individu-
als with a similar dietary specialization, as gulls in
this system feed primarily on Blue Mussels during
incubation (Camphuysen 2013, Van Donk et al.
2017). Finally, incubation is an important period
for increasing energy reserves, as Herring Gulls
recover from the physical impacts of egg-laying
(females) and extra food provisioning in the pre-
laying phase (males to females) (Hario et al.
1991). Therefore, the time and energy spent on
foraging is of great importance during incubation.

The aim of the study was to investigate whether
fine-scale foraging site fidelity is related to time-
activity budgets by focusing our analysis on individ-
uals that primarily use the same resource organized
in discrete patches. We quantified time-activity
budgets of individual Herring Gulls and estimated
energy expenditure using GPS tracking and tri-axial
acceleration measurements. We expected that site-
faithful individuals spend more time in the breed-
ing territory as they need less time for foraging
(supplementary-fed Herring Gulls stay longer in
the colony; Niebuhr 1983), spend a larger propor-
tion of time on inactive behaviour during foraging
(self-maintenance) or use less energy during forag-
ing as they spend less time on searching, social
interactions and commuting between patches. Her-
ring Gulls are sexually dimorphic, and both sex and
body size can influence their hierarchy (Monaghan
1980, Sibly & McCleery 1983). This may result in
competitive interference within feeding patches,
with females or smaller individuals being displaced
more frequently than males and hence being less
site-faithful. We therefore also tested whether body
size or sex influenced the level of site fidelity or
time-activity budgets.

METHODS

Study system

The study was based on a breeding colony on the
island of Texel, the Netherlands (53°000N,
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04°430E) between the western Wadden Sea and
the southern North Sea (Fig. 1a). Approximately
4000 pairs of Herring Gulls breed sympatrically
with around 11 000 pairs of Lesser Black-backed
Gulls Larus fuscus (Camphuysen & Gronert,
2010). We have permission to work in the colony
and catch, ring and tag Herring Gulls under the
permit Art 75 of the Dutch ‘Flora & Faunawet’
FF/75A/2014003, an annually renewed ringing
permit issued by Vogeltrekstation Wageningen for
ringer-licensed E29 Camphuysen, an annually
renewed research permit issued by Saatsbosbeheer
Divisie grond en gebouwen, and a permit for ani-
mal experiments (tracking Herring Gulls) issued
by the ‘Nederlandse Voedsel- en Warenautoriteit’,
Ministry of Economics, TRC/VWA/20132090.
The foraging and breeding ecology of Herring
Gulls breeding on the island have been studied for
over 10 years. Based on analysed prey remains
found on breeding territories over the study per-
iod, the main foraging habitat includes arable land,
urban areas, sea (North Sea and Wadden Sea) and
coastal areas including beach and breakwaters.
Breakwaters are human-made coastal defence
structures colonized by Blue Mussels which are
expected to provide the main diet during the incu-
bation period (up to 70% of pellets contained
mussels) (Camphuysen et al. 2008, Camphuysen
2013, Van Donk et al. 2017). These foraging
patches are found within 35 km of the colony,
along the North Sea coast between Texel and
Schoorl (Fig. 1a) and are organized in discrete
patches, comparable in structure and size, and lin-
early arranged with similar distance (~ 200 m
along the coast of Noord-Holland and ~ 400 m
along the coast of Texel) in-between neighbouring
breakwaters (Fig. 1b). The quality of Blue Mussels
is generally similar between different breakwaters
and there is no indication of depletion of resources
through the year (Dekker et al. 2014). Although
there is no evidence of resource depletion, the
number of birds can cause interference competi-
tion (Vahl et al. 2005). Furthermore, gulls are uni-
formly distributed over the breakwaters, with
more or less similar numbers of gulls per breakwa-
ter.

Data collection

To obtain time-activity budgets of Herring Gulls at
a fine spatial and temporal scale, GPS trackers of
the UvA Bird Tracking System were used (Bouten

et al. 2013). These trackers measure the geographi-
cal location (with a mean position error of 3 m for
measurement intervals of 60 s and 30 m for inter-
vals of 600 s), time (UTC), altitude above mean sea
level (m), ground speed (km/h) and acceleration in
three directions (surge (x), sway (y) and heave (z)).
Tracking devices were calibrated to convert x, y and
z acceleration data to gravitational force (1
gn = 9.81 m/s2). A total of 31 adult Herring Gulls
(17 males and 14 females) were equipped with GPS
trackers between 2013 and 2015. Birds were
trapped during incubation using a walk-in trap. The
birds were colour-ringed and a solar-powered GPS
tracker (ranging from 17.1 to 19.7 g) was mounted
with a 3-g non-flexible Teflon harness on the back
of the bird. We sexed each bird on the basis of bio-
metrics (head plus bill length) with only 5%
expected misidentification (Coulson et al. 1983)
and made size measurements including bill depth
(at base, 0.1 mm), tarsus length (mm), wing length
(mm) and body mass (g). We calculated a body size
index to analyse the effect of size in later analyses
using the first principal component (PC) of tarsus
length, wing length and head plus bill length (Ben-
son et al. 2003). To associate a high body size index
score with a large body size, we multiplied the PC
by –1 (Table S1). The mean body mass (� standard
deviation) of tagged females was 887 � 49 g and
that of males 1016 � 59 g. Birds were released
immediately after being instrumented, which was
usually within 20 min of capture. As recommended
for seabirds (Phillips et al. 2003), the GPS tracker
and harness weighed < 3% of the body mass of the
birds (average mass of tracker and harness combined
2.4% of female body mass, 2.1% of male body
mass). Although the mass of the trackers is not
excessive, we cannot exclude the possibility that the
devices affected the birds in another way. Thaxter
et al. (2016) showed that GPS trackers, which were
attached in the same way as the trackers in our
study, did not affect (short-term) breeding produc-
tivity and winter return rates in the closely related
Lesser Black-backed Gull. In our study, there was
some indication that birds with GPS trackers had
lower return rates than expected; 70% of individuals
with a GPS tracker were seen again the next year,
which is lower than a rough estimate of 90% sur-
vival of adult Herring Gulls of this colony. Also,
birds with a GPS tracker appeared to have a lower
likelihood of breeding again in the next season; 62%
of the birds bred again in the next season, which is
lower than expected. Roughly, birds of this colony
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breed once every 1.5 years, which is 75% of breed-
ing individuals. Here, we saw a difference between
the sexes, as only 30% of females bred again the fol-
lowing season, compared with 82% of males. How-
ever, birds with a tracker did not have a lower
hatching success than the average hatching success
of the breeding colony in the same period (65.5%
for the colony compared with 65.6% for birds with

GPS trackers). Besides, we attached some GPS
trackers to birds which had already been colour-
ringed (n = 7) in earlier breeding seasons. This gave
us the opportunity to compare foraging sites and
sometimes even winter areas before and after
attachment of the tracker. These birds still visited
the same foraging and wintering areas, suggesting
that foraging behaviour had not changed.

(a)

(b) (c) (d)

Figure 1. Map of the study system at different spatial scales. (a) Overview of the study area. The breeding colony is indicated with
an asterisk. Breakwaters are situated along the North Sea coast (both on the island of Texel and on the mainland). The dashed area
indicates where breakwaters are situated. The square on (a) indicates the area shown on a larger scale (b, c, d). (b) Map of seven
breakwaters along the coast of Noord-Holland. (c, d) Examples of area use of respectively an individual with low foraging site fidelity
(bird-year 1600_2013, SFI 2.36) and a very site-faithful individual (bird-year 6016_2013, SFI 0.52) on a selection of breakwaters
(shown in b) during 14 days of incubation. Every point corresponds to one GPS fix.
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A GPS location was taken every 10 min inside
the breeding territory and every 5 min outside the
breeding territory. We occasionally took higher
resolution measurements on trackers with an
empty memory and full battery for other analyses.
As differences in resolution might influence com-
parison between individuals, we resampled the
data once every 5 min before analysing the data.
Tri-axial acceleration was periodically measured at
20 Hz for 1 s immediately after a GPS fix.

Habitat use and selection of birds

We made use of bird-year combinations in our
analysis, as two birds were tracked over 2–3 years
(bird ID 1600 and 6016). We will therefore use
the term ‘bird-year’ for the rest of the Methods
and Results section. To focus on the potential
impact of site fidelity without confounding effects
of time and energy constraints that may differ
across the breeding season, we compared breeding
birds during incubation only. We assumed that
individuals that breed and have a nest with eggs
are in comparable physical condition. During this
period, both males and females return regularly to
the colony to defend the territory and incubate
the eggs. This is also the period during which Blue
Mussels are the most predominant part of the Her-
ring Gull diet (Van Donk et al. 2017). We only
used GPS and accelerometer data of breeding birds
that had a nest with eggs for at least 5 days after
tagging, or the full breeding period of birds that
had a nest with eggs which received a tracker in
earlier breeding seasons (range 5–31 days). Herring
Gulls are considered a generalist species; they have
a broad prey spectrum and habitat use (Morris &
Black 1980, Gorke & Brandl 1986, McCleery &
Sibly 1986, Pierotti & Annett 1990, Irons 1998).
To remove the potential confounding effect of
diet, we compared site fidelity among birds in a
given year of which the breakwaters are the most
visited foraging habitat compared with other
potential foraging habitats.

Habitat use was calculated by assigning every
GPS fix to either the breeding territory (< 100 m
around the nest) or potential foraging habitats
around the colony. We took every GPS position
into account, apart from when an animal was com-
muting (i.e. when an individual was flying in a
straight line from one place to the other). To
select these GPS positions, we made use of an
expectation maximization binary clustering for

behavioural annotation, which used turning angle
and velocity obtained from successive locations to
cluster GPS positions in four behavioural cate-
gories (Garriga et al. 2016a). The categories are:
high velocity/low turn (HL), high velocity/high
turn (HH), low velocity/low turn (LL) and low
velocity/high turn (LH). We assumed that an ani-
mal was commuting when velocity was high and
turning angle low (HL category). We applied the
clustering algorithm per individual in a given year
using the R package EmbC and applied a pre-
smoothing procedure which is provided by the
package to account for temporal associations (Gar-
riga et al. 2016b). Subsequently, we assigned every
non-commuting GPS position to a habitat. We
defined the following habitats: sea (North Sea and
Wadden Sea), breakwaters, beach, arable land (in-
cluding ponds, forest and nature areas) and urban
areas. Sea and arable land were defined using
GDAM January 2012 European boundaries poly-
gon shapefiles (Hijmans 2012). The beach habitat
was based on LGN5 (Landelijke Grondgebruik-
skartering 5) (Hazeu 2005), which provides infor-
mation about land use in the Netherlands. Urban
areas were based on the QGIS openlayer plugin of
OpenStreetMap Humanitarian Data Model in
which cities, towns and dump sites around the
breeding colony were selected. The breakwaters
were delineated based on the QGIS openlayer plu-
gin GOOGLE EARTH which uses GOOGLE
EARTH images. Every breakwater along the coast
of Texel and Noord-Holland was given a unique
number (QGIS Development Team 2009, version
2.18). A total of 165 breakwaters were available
for the birds until 2014; after 2014 there were
119 breakwaters left due to coastal protection
activities. Often, the area around the breakwater is
also available for foraging gulls during low tide
(pers. obs.) and therefore we also assigned GPS
points closer than 50 m to the breakwater to the
habitat breakwater. Each GPS location was also
assigned a duration (s) which was calculated by
averaging the backward and forward intervals
between relocations, providing a ‘centred dura-
tion’. Gaps in the data occurred and the ‘centred
duration’ of GPS measurements before and after
gaps was sometimes disproportionally long. We
therefore removed the GPS measurements which
had a ‘centred duration’ deviating more than
10 min from the measurement scheme. Using the
centred duration and habitat class assigned to each
location, we calculated the percentage of time
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spent outside the breeding territory while not
commuting in every foraging habitat by dividing
total time spent in a habitat by the total time
spent outside the breeding colony per bird-year.
The percentage of time spent in each habitat was
then ranked from high to low and birds that pre-
ferred the breakwaters (most time spent) over
other foraging habitats were selected for further
analysis (Fig. 2, n = 17, eight females and nine
males). The selected animals spent 39–70% of
their time outside the colony while non-commut-
ing on breakwaters (Table 1). The distribution of
GPS locations around the breeding territory of all
incubating animals and the selected individuals are
shown in Figure 3(a) and 3(b), respectively. We
defined foraging trips as the first location outside
the breeding territory until the next location
within the breeding territory. The maximum
(great circle) distance (km) travelled from the
breeding colony was calculated per trip.

Site fidelity index (SFI)

Site fidelity of birds was determined per bird-year
by analysing the time an individual spent near every
breakwater. For each bird-year, we first calculated
the time spent in the proximity (i.e. closer than
50 m) of every breakwater when not commuting,
using the rgeos package in R (Bivand & Rundel
2016). We calculated the percentage of time spent
on each breakwater as the time spent near each
breakwater divided by the total time spent on all
breakwaters. To only include breakwaters which
were of significance in the total time, we excluded
from the calculation breakwaters on which individ-
uals spent < 2% of their total time spent on break-
waters. Site fidelity was calculated per bird-year as
the Shannon index, which is given as SFI = � ∑ipi
ln pi where pi is the percentage time spent on each
breakwater (Shannon & Weaver 1949). A high SFI
value corresponds to an animal with low site fidelity
(‘diverse’ patch use), whereas a low SFI corresponds
to an animal with high site fidelity (‘non-diverse’
patch use) (Fig. S1). Breakwaters are used as forag-
ing habitat; however, animals also rest and digest
their food on breakwaters. To check whether the
breakwaters were not used solely for resting by
some individuals, we also calculated the site fidelity
index based on foraging behaviour (‘terrestrial
movement’) solely. The two measurements were
highly correlated and thus we decided that it was

valid to use all behaviours for the calculation of site
fidelity (Fig. S2).

Relationship between SFI and time-
activity budgets

We expected that highly site-faithful individuals
with breakwaters as their principal feeding area can
spend more time in the breeding colony to defend
their territory or can spend less energy outside the
breeding territory by spending more time resting.
To test whether site fidelity is related to the time
and energy budget of individual Herring Gulls, we
calculated: (1) time spent in the breeding territory,
(2) proportion of time spent on inactive behaviour
outside the breeding territory and (3) daily energy
expenditure outside the breeding territory; these
are explained further below. For analyses (2) and
(3) we excluded one bird-year because of missing
acceleration measurements (see Table 1). For the
calculation of SFI we only used GPS locations close
to and on the breakwaters, but we used all GPS
locations to calculate the time-activity budget. As
we selected individuals with breakwaters as their
principal feeding area, we assumed that most of
the time dedicated to foraging was done on break-
waters. As breakwaters are an intertidal foraging
habitat, they are only available at low tide, which
should be taken into consideration. Habitat around
the breakwaters is also often used (Fig. 3b), for
instance for waiting, preening and digesting.

(1) Time spent in the breeding territory

We calculated the average hours per day spent
in the breeding territory for every bird-year
combination calculated as every GPS position
that was closer than 100 m to their nest-site.
To analyse whether SFI was correlated to the
time individuals per bird-year spent in their
breeding territory, a linear mixed-effect model
was fitted. The full model contained SFI and
sex as fixed effects, average hours per day in
breeding territory as the dependent variable,
and random intercepts for bird ID and year to
account for differences between individuals and
yearly fluctuations in foraging effort.

(2) Proportion of time spent on inactive beha-
viour outside the breeding territory

To calculate the activity budget of birds within
a given year we trained a random forest
machine-learning algorithm for the classification
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of accelerometer data (Shamoun-Baranes et al.
2016) using two datasets. The first dataset is
based on annotated accelerometer data of Lesser
Black-backed Gulls (Shamoun-Baranes et al.
2016). The second dataset contained annotated
accelerometer data of six Herring Gulls (three
males and three females) with synchronized
video recordings while foraging on breakwaters.
The two species are comparable in size and
morphology, and most behaviour and
accelerometer patterns were clearly similar. We
first distinguished 11 different behaviours
(Table S2), which we aggregated into four
behavioural classes: (1) inactive behaviour (sit-
ting or standing and floating on the water), (2)
terrestrial movement (walking, looking for food,
standing while looking for food, handling prey,
other movements), (3) flapping flight (regular
and extreme flapping flight) and (4) soaring
flight (regular soaring and manoeuvring). In
total, 8472 segments of acceleration measure-
ments lasting 0.5 s were used for annotation.
We calculated 37 data features from the track-
ing data that could be used to classify behaviour
and reduced the number of features to 17

(Table S2) (Shamoun-Baranes et al. 2016). The
random forest classifier used 50 trees and was
trained on a random subset of 70% of the anno-
tated data. Accuracy was tested with the
remaining 30% of the data. The final model,
with an overall accuracy of predicting the 11
behaviours of 94%, was used to classify all
unclassified accelerometer data.
Proportions of the different behavioural classes
were calculated by the accumulated time spent
on one of the activities divided by the total
duration of measurements per bird-year. As
proportions always sum up to one, they impose
some constraints on the variance and covariance
of the data. To allow the use of standard statis-
tical techniques we transformed the data by tak-
ing the log transformation of the proportion of
inactive behaviour over the proportion of active
behaviour (terrestrial movement, flapping flight
and soaring flight) (Aitchison 1986, Warton &
Hui 2011).
A linear mixed-effect model was fitted that con-
tained SFI, sex and body size index as fixed
effects, the (transformed) proportion of inactive
behaviour as the dependent variable, and

Figure 2. Overview of habitat use outside the breeding territory while not commuting per bird-year combination. Habitat use is shown
in percentage of time spent in different possible foraging habitats near the colony, which are urban areas, arable land, sea, beach
and breakwaters. Data are organized in ascending percentage of time spent on breakwaters, where Blue Mussels are the primary
resource. Individuals that spend most of their time on breakwaters compared with other habitats within a given year and that are
used in further analysis are shown within the black square. [Colour figure can be viewed at wileyonlinelibrary.com]
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Table 1. Overview of bird-year combinations used in the study with their site fidelity index (SFI) and their time-activity budget.

Bird-year
combination SFI

Colony
(h/day)

Prop.
Inactive

Prop.
Terr.

Prop.
Soar

Prop.
Flap

Energy
(kJ/day)

Prop.
return

B. time
(%)

1600_2014 2.65 12.56 0.55 0.27 0.07 0.11 623 0.20 51
1600_2013 2.36 13.39 0.37 0.34 0.12 0.17 701 0.21 63
6074_2014 2.33 13.37 0.59 0.20 0.12 0.09 554 0.29 52
6208_2015 2.31 12.06 0.62 0.23 0.09 0.06 602 0.16 51
6079_2014 2.28 12.24 0.57 0.26 0.09 0.08 637 0.37 51
6006_2014 2.04 13.85 0.58 0.21 0.08 0.13 653 0.29 45
6216_2015 2.01 14.63 0.53 0.31 0.07 0.09 520 0.47 44
6206_2015 1.76 15.21 0.54 0.20 0.16 0.10 471 0.75 40
6009_2013 1.70 11.75 0.44 0.40 0.13 0.02 534 0.33 39
6214_2015 1.62 16.30 0.46 0.32 0.11 0.11 478 0.58 62
6016_2015 1.51 15.31 0.59 0.27 0.09 0.07 515 0.49 52
6072_2014 1.43 16.94 0.50 0.38 0.07 0.05 305 0.42 70
6073_2014 1.29 14.83 0.60 0.20 0.08 0.11 505 0.49 52
6071_2014 1.10 13.91 0.45 0.29 0.12 0.14 709 0.70 64
6016_2014 0.63 15.82 0.62 0.23 0.06 0.09 500 0.43 55
6016_2013 0.51 14.24 0.55 0.31 0.07 0.07 561 0.48 58
6080_2014a 0.19 9.72 – – – – – 0.70 59

Average hours per day spent in the breeding territory (Colony), the proportion of time spent during foraging trips on inactive beha-
viour (Prop. Inactive), terrestrial movement (Prop. Terr), soaring flight (Prop. Soar) or flapping flight (Prop. Flap), daily energy spent
while on foraging trips (kJ/day), the proportion of foraging trips where birds return to the favourite breakwater (Prop. return) and the
percentage of time outside the breeding territory spent on breakwaters (B. time). The table is organized in descending order accord-
ing to SFI score. A high SFI value corresponds to an animal with low site fidelity (‘diverse’ patch use), and a low SFI corresponds to
an animal with high site fidelity (‘non-diverse’ patch use). The two examples of bird-year combinations shown in Fig. 1(c,d) are high-
lighted in grey, representing two individuals with similar daily energy expenditure during foraging trips but contrasting SFI. aBird-year
that was excluded from some analysis because of too few acceleration measurements.
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Figure 3. Distribution of all GPS locations of incubating Herring Gulls carrying a tracker and a nest with eggs for at least 5 days (a) and
distribution of the animals that favoured breakwaters over other foraging habitat (b). The breeding colony is indicated with an asterisk.
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random intercepts for bird ID and year to
account for differences between individuals and
yearly fluctuations in foraging effort. In this
model, we also added average maximum dis-
tance from the colony as a fixed effect, calcu-
lated as the average of the maximum distance
travelled away from the colony per foraging trip
(Table S1), as this might affect the time spent
on flying and thus the total time spent on active
behaviour.

(3) Daily energy expenditure outside the breed-
ing territory

To estimate energy expenditure outside the
breeding territories, we made estimations of
metabolic rates (kJ) for the four classified beha-
viours (Collins et al. 2016). Inactive behaviour
has low energetic cost, whereas flapping flight is
estimated to be the most costly form of locomo-
tion. Variation in time spent on flapping flight
might therefore drive variation in energy expen-
diture (Norberg 1990, Collins et al. 2016). We
calculated the basal metabolic rate (BMR) in
kJ/day as 2.3 9 body mass (g)0.774 at capture
(Bryant & Furness 1995). As the BMR does not
account for thermoregulation when temperature
is lower or higher than the thermo-neutral
zone, digestion or small body movements, we
calculated the costs for the behaviour ‘inactive’
as the resting metabolic rate (RMR);
1.7 9 BMR (Baudinette & Schmidt-Nielsen
1974, Furness 1978). We estimated the cost of
terrestrial movement as 2 9 BMR (based on
the formula for cost of walking in Bautista et al.
1998) using 0.4 m/s, the average speed mea-
sured by the GPS of all bird-year combinations
during terrestrial movement. For the cost of
flight, we calculated energetic expenditure as
2 9 RMR for soaring flight (Baudinette & Sch-
midt-Nielsen 1974) and 7 9 RMR for flapping
flight (Tucker 1972). We calculated the average
number of hours birds in a given year spent on
the four classified behaviours (using values from
Table 1) and multiplied these values by the
energetic estimations we made to calculate the
average energy expenditure outside the breed-
ing colony (kJ/day).
To analyse whether energetic expenditure was
correlated to SFI, we fitted a linear mixed-effect
model. The full model contained SFI and sex as
fixed effects, daily energy expenditure outside
the breeding territory as the dependent variable,

and random intercepts for bird ID and year to
account for differences between individuals and
yearly fluctuations in foraging effort. We also
added average maximum distance from the col-
ony as a fixed effect, calculated as the average
of the maximum distance travelled away from
the colony per foraging trip, as this might affect
the time spent on flying and thus energy expen-
diture.

Relationship between SFI, body size and
sex

To analyse whether SFI is determined by sex or
size, a linear mixed-effect model was fitted. The
full model contained sex and body size index as
fixed effects and SFI as the dependent variable and
random intercept for bird ID.

Statistical analysis

All models were fitted using the lmer function
from the lme4 package in R version 3.3.2 (Bates
et al. 2015). Full models were compared with
models containing all possible combinations of
fixed effects using the aictab function from the
AICCMODAVG package (Mazerolle 2017). To
assess whether the final model was valid in explain-
ing the data, a comparison between the final model
and a null model which only contained the random
factor was made using ANOVA and P-values were
obtained by likelihood-ratio tests. We reported the
model estimates with standard errors and marginal
R-squared values for mixed models (as in Naka-
gawa & Schielzeth 2013) of the best models (low-
est Akaike information criterion (AIC)) as well as
the models in which the AIC difference with the
best model is < 2 in the text. Full models and AIC
values are reported in Tables S3–S6.

RESULTS

Habitat use and selection of birds

The percentage of time spent in the main habitat
zones outside the breeding territory per bird-year
combination varied greatly between individuals
(Fig. 2, n = 36). For further analysis, we selected
bird-year combinations for which the preferred
foraging habitat (most time spent compared with
other foraging habitats) are breakwaters (n = 17
bird-years, 14 individual birds, seven females and
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seven males). The selected birds spent 39–70% of
their time outside the breeding territory while not
commuting on breakwaters (Fig. 2, Table 1). Fig-
ure 3 shows the distribution of GPS locations dur-
ing the incubation period of all Herring Gulls with
a GPS tracker (Fig. 3a) and the GPS locations of
the selected birds (Fig. 3b). Although the selected
birds still spent considerable time in other habitats
(Fig. 2), most locations in other foraging habitat
were concentrated around the breakwaters at sea
and on the mainland (Fig. 3b).

Site fidelity index

The SFI differed between bird-year combinations
that have breakwaters as their preferred foraging
habitat (Table 1), ranging from an SFI of 0.19 to
2.65. The most site-faithful bird spent 92% of its
time on breakwaters on a single breakwater. All
birds returned regularly to their most visited break-
water (16–75% of their foraging trips, Table 1).
Two extreme examples are shown in Figure 1(c,d),
in which the space use of two individual Herring
Gulls in 2013 is plotted on the same selection of
breakwaters. These two birds spent the same per-
centage of time on breakwaters (Table 1, high-
lighted) but have very different SFI scores. The bird
shown in Figure 1(c) (1600_2013) divided its forag-
ing time over several breakwaters and had thus a
high SFI score (SFI = 2.36). The bird shown in
Figure 1(d) (6016_2013) was highly site-faithful,
spending 79% of its breakwater time on one break-
water (SFI = 0.51).

Relationship between SFI and time-
activity budgets

(1) SFI and time spent in the breeding territory

The average time spent per day in the breeding
territory varied among bird-year combinations
(13.76 � 1.85 h). The two most extreme birds
differed by 7 h/day in the time they spent in
the colony (minimum = 9.7 h/day, maxi-
mum = 16.9 h/day; Table 1). However, we did
not find a significant linear relationship with SFI
or an effect of sex (Table 2).

(2) SFI and proportion of time spent on inactive
behaviour outside the breeding territory

Time spent inactive outside the breeding terri-
tory differed among bird-years, ranging from

37% to 62% (54 � 7%, Table 1). The most
active bird (1600_2013) was moving around
63% of the time during foraging trips, whereas
other birds were active less than half of the
time outside the colony (Fig. 4, Table 1). How-
ever, the time that birds spent inactive was not
related to SFI or the other fixed factors in the
model (Table 2).

(3) SFI and daily energy expenditure outside the
breeding territory

The estimated daily energy expenditure outside
the breeding territory ranged from 305 to
709 kJ/day (554 � 101, Table 1). We did not
find a significant linear relationship between
daily energy expenditure outside the breeding
territory and SFI or other fixed factors in the
model (Table 2).

Relationship between SFI, body size and
sex

We investigated whether foraging site fidelity
might be driven in part by body size or sex, given
differences in competitive strength (interference
competition). Highly site-faithful birds had a larger
body size (Fig. 5). The best model included body
size index as a fixed factor and significantly dif-
fered from the null model (Table 3).

DISCUSSION

We investigated the consequences of fine-scale for-
aging site fidelity in adult Herring Gulls with simi-
lar dietary specialization during incubation. The
study system was especially suitable for investigat-
ing this question in free-ranging animals because of
the predictable and homogeneous foraging envi-
ronment organized in distinct foraging patches and
the technical ability to measure fine-scale beha-
viour 24 h/day and across an entire breeding
season. By making a detailed description of time-
activity budgets of the birds using GPS trackers
with tri-axial acceleration, we showed remarkable
differences between individuals in habitat use
(Fig. 2), fine-scale foraging site fidelity on break-
waters (Fig. 1c,d, Table 1), and time and energy
use (Fig. 4, Table 1). Highly site-faithful birds
tend to have a larger body size (Fig. 5). In this
study we focused on the incubation phase, during
which individuals face similar time and energy
constraints. We found no clear (short-term)

© 2019 The Authors Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists’ Union.

438 S. Van Donk et al.



consequences of fine-scale foraging site fidelity;
highly site-faithful individuals did not spent more
time in the breeding territory or more time inac-
tive, and did not have a lower daily energy

expenditure outside the breeding territory.
Although this result was contradictory to our
expectations, there are several possibilities as to
how variation in site fidelity could exist in

Table 2. Model results of the relationship between SFI and proxies for time-activity budgets: (1) time spent in the breeding territory
in hours (Colony time), (2) transformed proportion of time spent on inactive behaviour outside the breeding territory (Inactive behav.)
and (3) daily energy expenditure outside the breeding territory in kJ (Energy exp.) tested using a mixed model with random intercept
for bird ID and year.

Dependent variable Fixed effect AIC Intercept � se Fixed effect estimate � se df v2 P m.R2

(1) Colony time Sex (M) 81.05 13.98 � 0.70 �0.56 � 0.99 1 0.32 0.57 0.02
(1) Colony time SFI 81.36 13.72 � 1.13 �0.01 � 0.61 1 0.00 0.98 0.00
(2) Inactive behav. Sex (M) 19.27 0.03 � 0.12 0.13 � 0.13 1 0.70 0.40 0.05
(2) Inactive behav. Distance 19.56 0.18 � 0.21 �0.01 � 0.02 1 0.41 0.52 0.02
(2) Inactive behav. SFI 19.93 0.03 � 0.24 0.02 � 0.12 1 0.03 0.86 0.00
(2) Inactive behav. Size 19.95 0.07 � 0.13 0.00 � 0.00 1 0.02 0.89 0.00
(3) Energy exp. Distance 201.78 459.96 � 69.59 10.62 � 6.47 1 1.88 0.17 0.13
(3) Energy exp. Sex (M) 201.83 527.90 � 41.38 76.17 � 54.23 1 1.84 0.18 0.13
(3) Energy exp. Size 202.99 566.87 � 34.34 1.52 � 1.83 1 0.67 0.41 0.06

Model estimates and model results, among which marginal R-squared (m.R2) of best models are shown (lowest AIC) and the mod-
els in which the AIC difference with the best model is < 2. Models with an ΔAIC > 2 are shown in Tables S3–S5. For the fixed effect
Sex, category female was used as the reference level (Intercept) and the fixed effect estimate is thus the value for males (M).

Figure 4. Behaviour outside the breeding territory per bird-year combination of selected birds. Behavioural classes are shown as the
percentage of time spent on inactive behaviour (sitting, standing, floating) or active behaviour (flapping and soaring flight and terrestrial
movement). Bird-year combinations are ordered from left to right on descending SFI (for values see Table 1). Bird-year 6080_2014
was excluded from this graph due to too few acceleration measurements. [Colour figure can be viewed at wileyonlinelibrary.com]
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populations without clear short-term benefits, as
discussed below.

The importance of other foraging
habitats

Herring Gulls are generalist species and have many
ways of foraging–flying, walking, pulling or fight-
ing, as well as standing still and observing the envi-
ronment, waiting for a feeding opportunity. We
therefore chose to use all GPS locations outside
the breeding territory, independent of behavioural
class and habitat, to calculate time-activity bud-
gets. For the animals with breakwaters as their
principal feeding habitat, we assumed that most of
the time dedicated to foraging is spent on break-
waters. Animals that eat bivalves such as Blue
Mussels have to spend time digesting these prey to
break the shells in their stomach. They do this on

breakwaters during low tide, but they may also
move to other places such as agricultural fields or
nearby rooftops to rest and digest, especially at
high tide, when breakwaters are not available. In
addition, these animals often spent time on the
beach, waiting for the breakwaters to appear at
low tide, or at sea, when disturbed by people or
dogs (CJC, SvD & JSB pers. obs.; Fig. 1c,d).
Figure 3(b) seems to confirm this idea, as most of
the GPS locations which are not situated on break-
waters are concentrated around the coastline. As
we did not include waiting and digesting time
around breakwaters in the total time spent on
breakwaters, the relative time spent outside the
colony on foraging-related behaviour on breakwa-
ters is probably higher than we reported (Table 1)
compared with other foraging habitat that does
not disappear at high tide, such as sea, urban areas
and arable land. Nevertheless, the time spent in
other foraging habitats could influence time-activ-
ity budgets, especially when animals forage in an
‘urban area’ which contains prey types of high
caloric value that are important for reproductive
output and condition (Pons 1992, Van Donk et al.
2017). However, we did not find evidence for this
in our data, as there was no relationship between
the time our selected animals spent on breakwaters
and either the level of site fidelity (Table 1) or the
time-activity budget (Fig. S3, Table 1).

How can variation in site fidelity be
maintained in populations?

We did not find clear consequences of fine-scale
foraging site fidelity in our study. However, we did
see differences in the level of fine-scale foraging
site fidelity between individuals. We discuss three
other hypotheses, besides the variation spent on
breakwaters, as to why this variation may exist in
the population with no apparent proximate advan-
tages or disadvantages.

Fitzpatrick et al. (2007) suggested that variation
in certain traits remains in populations due to nega-
tive frequency-dependent selection. This mechanism

Figure 5. The relationship between body size and SFI. A low
body size index indicates a bird with a small body size. A low
SFI indicates a bird in a given year with high foraging site fide-
lity. Every point represents one bird-year combination (n = 17).
Linear regression is shown (line) with standard error (shaded
area). The shape of the point indicates the sex of the bird.

Table 3. Model results of the relationship between SFI and body size tested using a mixed model with random intercept for bird ID.

Dependent variable Fixed effect AIC Intercept � se Fixed effect estimate � se df v2 P m.R2

SFI Size 31.20 1.71 � 0.11 �0.02 � 0.01 1 6.21 0.01 0.47

Model estimates and model results of the best model are shown (lowest AIC). Models with a ΔAIC > 2 are shown in Table S6.
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selects against common phenotypes, thereby creating
fitness advantages for the rarer phenotypes (Maynard
Smith & Price 1973, Wilson & Yoshimura 1994,
Pruitt & Riechert 2009, Patrick & Weimerskirch
2017). For birds, negative frequency-dependent
selection is often suggested to be an important mech-
anism in regulating consistent variation in beha-
vioural traits, but evidence for this is largely absent
(Kurvers et al. 2012). The few studies that have
investigated this mechanism (in Oystercatchers Hae-
matopus ostralegus ostralegus and Barnacle Geese
Branta leucopsis) could not find evidence for this
hypothesis (Van de Pol et al. 2010, Kurvers et al.
2012). Currently, we do not have any evidence to
support this hypothesis.

A second hypothesis is that there are pros and
cons associated with foraging site fidelity. Site-
faithful individuals might have higher food intake
on their specific foraging spot but have less flexi-
bility to respond to environmental change because
they have less knowledge about their wider envi-
ronment and therefore cannot easily switch
between foraging patches or resources (Wilson &
Yoshimura 1994, Bolnick et al. 2003, Wakefield
et al. 2015). For instance, in our study system,
highly site-faithful individuals might profit less
from unexpected food bonanzas such as mass mor-
tality of Razor Clams Ensis directus that sometimes
wash ashore (Armonies & Reise 1999). Besides
missing food bonanzas, site-faithful individuals
may be more vulnerable to environmental change
(Kotzerka et al. 2011). Changes in the environ-
ment are also taking place in our system. Due to
coastal protection activities, the creation of new
dunes and sand supplementation has already cov-
ered important foraging patches (breakwaters)
(van Koningsveld & Mulder 2004, Freriks 2015,
Wenneker et al. 2016). These changes create a
natural experiment in which we can test whether
individuals with high site fidelity can adapt less
well when their foraging habitat is disappearing.

A third hypothesis to explain our findings is
that individuals benefit from being site-faithful in
the long term or even over an individual’s lifetime,
as foraging behaviour is often consistent over years
in marine animals (Bradshaw et al. 2004, Wake-
field et al. 2015). The importance of foraging site
fidelity might only become apparent in very
demanding times of an animal’s life cycle, for
instance when animals have to feed their young. In
a study on Black-Browed Albatrosses Thalassarche
melanophris, site fidelity within a certain year was

positively associated with reproductive success
(Patrick & Weimerskirch 2017). Measuring forag-
ing site fidelity and analysing potential conse-
quences during longer periods might help to
elucidate the mechanisms and consequences of site
fidelity. In the current study, the sample size was
too low to measure the consequences of site fide-
lity over years. However, the two individual birds
that were measured over more than 1 year (bird
ID 1600 and 6016, Table 1) were quite consistent
in their level of site fidelity; bird ID 1600 had the
lowest site fidelity measured over 2 years of all
individual birds in this study, whereas, by compar-
ison, bird ID 6016 was very site-faithful over
3 years (Table 1).

The role of size in the level of foraging
site fidelity

Individual differences in foraging strategies are
often related to morphology or sex (Gonz�alez-Sol�ıs
et al. 2000, Lewis et al. 2002, Camphuysen et al.
2015). In our study, variation in foraging site fide-
lity was also not randomly distributed over the
population. We found a significant relationship
between foraging site fidelity and size, larger indi-
viduals tending to be more site-faithful. Herring
Gulls are sexually dimorphic and therefore sex and
size are difficult to disentangle. Also, body size is
clearly not the only variable that influences the
variation in foraging site fidelity, as some large
individuals in our study are not highly site-faithful
(Fig. 5). Although the results are not conclusive,
they do suggest that larger individuals are better
able to deal with competition and defend their
specific foraging patch, whereas smaller individuals
are displaced more frequently from feeding
patches. However, it is also possible that larger
individuals have to balance other trade-offs com-
pared with smaller individuals. For instance, flying
is more expensive for larger/heavier individuals
and therefore it might be more rewarding to be
site-faithful compared with smaller individuals
with lower costs of moving between foraging
patches. In the current study, we used rough esti-
mations for energy expenditure of different beha-
viours based on literature values. Investigating
energetic costs among individuals with different
morphology and time-activity budgets would bene-
fit from a method in which energy expenditure
can be investigated on the level of an individual.
Several studies have investigated the relationship
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between overall dynamic body acceleration
(ODBA), measured with GPS devices, and energy
expenditure, and ODBA has been used as a proxy
for energy expenditure (Wilson et al. 2006, Gleiss
et al. 2011, Hicks et al. 2017). However, ODBA is
not comparable between terrestrial movement and
flight, probably due to the different muscle groups
involved in each kind of behaviour (Laich et al.
2011). Improving estimates of energy expenditure
based on body acceleration which can be measured
throughout an annual cycle may help to gain more
insight into individual differences in energy expen-
diture (Hicks et al. 2017).

CONCLUSION AND FUTURE
DIRECTIONS

We studied Herring Gulls foraging in a food land-
scape that is heavily shaped by humans. This cre-
ated a unique situation to study individual
differences in fine-scale habitat use. In this way,
we were able to add empirical data to increase
knowledge on the consequences of fine-scale forag-
ing site fidelity, an important phenomenon in
space use (Wolf & Trillmich 2007, Brischoux et al.
2009, Lowther et al. 2012). Although individuals
varied in their foraging site fidelity, we did not find
evidence that this behaviour comes with an advan-
tage in terms of their time-activity budgets in the
system we studied. As discussed, many environ-
mental and individual processes can be involved in
shaping variation in foraging site fidelity. Bio-log-
ging, especially with GPS, has created new oppor-
tunities for studying the consequences of foraging
site fidelity at a level of detail that was not possible
in the past. Where feasible, future studies should
focus on the consequences of site fidelity within
individuals over longer time-spans, to explore dif-
ferent constraints within the annual cycle. In addi-
tion, we recommend studies on the consequences
of different strategies under changing food condi-
tions, and comparing consequences not only within
but also between species.
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SUPPORTING INFORMATION

Additional supporting information may be found
online in the Supporting Information section at
the end of the article.

Figure S1. Example of two individuals with
contrasting foraging site fidelity.

Figure S2. Standardized major axis analysis
between the Shannon index based on all data
points on and near (< 50 m) the breakwaters and
the Shannon index based on all terrestrial activity
on and near (< 50 m) the breakwaters.

Figure S3. Relationship between the percentage
of time on breakwaters and time-activity budgets
of individuals with breakwaters as principal forag-
ing habitat.

Table S1. Overview of bird-year combinations
used in this study.

Table S2. Definition of 11 activity classes of
Herring Gulls used to annotate tri-axial accelera-
tion data.

Table S3. Full models and their AIC values test-
ing the relationship between SFI and the dependent
variable average time spent in the breeding territory
per bird in a given year.

Table S4. Full models and their AIC values test-
ing the relationship between SFI and the dependent
variable-transformed proportion of time spent inac-
tive during foraging trips.

Table S5. Full models and their AIC values test-
ing the relationship between SFI and the dependent
variable daily energy expenditure during foraging
trips.

Table S6. Full models and their AIC values test-
ing the relationship between SFI, body size and sex.

© 2019 The Authors Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists’ Union.

Foraging site fidelity in seabirds 445


