275 research outputs found

    Analytic solutions for parallel transport along generic bound geodesics in Kerr spacetime

    No full text
    We provide analytical closed form solutions for the parallel transport along a bound geodesic in Kerr spacetime. This can be considered the lowest order approximation for the motion a spinning black hole in an extreme mass-ratio inspiral. As an illustration of the usefulness of our new found expressions we scope out the locations of spin-spin resonances in quasi-circular EMRIs. All solutions are given as functions of Mino time, which facilitates the decoupling of the equations of motion. To help physical interpretation, we also provide an analytical expression for the proper time along a geodesic as a function of Mino time

    Exact Piecewise Flat Gravitational Waves

    Full text link
    We generalize our previous linear result [1] in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to construct a piecewise flat spacetime that describes an impulsive plane wavefront. From these wavefronts more general plane waves may be constructed

    Eccentric self-forced inspirals into a rotating black hole

    Get PDF
    We develop the first model for extreme mass-ratio inspirals (EMRIs) into a rotating massive black hole driven by the gravitational self-force. Our model is based on an action angle formulation of the method of osculating geodesics for eccentric, equatorial (i.e., spin-aligned) motion in Kerr spacetime. The forcing terms are provided by an efficient spectral interpolation of the first-order gravitational self-force in the outgoing radiation gauge. We apply a near-identity (averaging) transformation to eliminate all dependence of the orbital phases from the equations of motion, while maintaining all secular effects of the first-order gravitational self-force at post-adiabatic order. This implies that the model can be evolved without having to resolve all O(106)\mathcal{O}(10^6) orbit cycles of an EMRI, yielding an inspiral model that can be evaluated in less than a second for any mass-ratio. In the case of a non-rotating central black hole, we compare inspirals evolved using self-force data computed in the Lorenz and radiation gauges. We find that the two gauges generally produce differing inspirals with a deviation of comparable magnitude to the conservative self-force correction. This emphasizes the need for including the (currently unknown) dissipative second order self-force to obtain gauge independent, post-adiabatic waveforms

    Excitation of Kerr quasinormal modes in extreme-mass-ratio inspirals

    No full text
    If a small compact object orbits a black hole, it is known that it can excite the black hole's quasinormal modes (QNMs), leading to high-frequency oscillations (``wiggles'') in the radiated field at J+\mathcal{J}^+, and in the radiation-reaction self-force acting on the object after its orbit passes through periapsis. Here we survey the phenomenology of these wiggles across a range of black hole spins and equatorial orbits. In both the scalar-field and gravitational cases we find that wiggles are a generic feature across a wide range of parameter space, and that they are observable in field perturbations at fixed spatial positions, in the self-force, and in radiated fields at J+\mathcal{J}^+. For a given charge or mass of the small body, the QNM excitations have the highest amplitudes for systems with a highly spinning central black hole, a prograde orbit with high eccentricity, and an orbital periapsis close to the light ring. The QNM amplitudes depend smoothly on the orbital parameters, with only very small amplitude changes when the orbit's (discrete) frequency spectrum is tuned to match QNM frequencies. The association of wiggles with QNM excitations suggest that they represent a situation where the \emph{nonlocal} nature of the self-force is particularly apparent, with the wiggles arising as result of QNM excitation by the compact object near periapsis, and then encountered later in the orbit. Astrophysically, the effects of wiggles at J+\mathcal{J}^+ might allow direct observation of Kerr QNMs in extreme-mass-ratio inspiral (EMRI) binary black hole systems, potentially enabling new tests of general relativity

    Human keratinocyte sensitivity towards inflammatory cytokines varies with culture time

    Get PDF
    Proliferating keratinocyte cultures have been reported to synthesize higher concentrations of prostaglandin (PG) E than confluent ones. As interleukin-1 (IL-1) stimulates keratinocyte PGE synthesis we investigated whether the degree of confluency of the keratinocyte culture modified the response of the cells to IL-1. It was found that IL-1α (100 U/ml) stimulated PGE2 synthesis by proliferating (7 days in culture) but not differentiating (14 days in culture) keratinocytes. Similar effects were observed using tumour necrosis factor-α. Both arachidonic acid (AA) and the calcium ionophore A23187 stimulated PGE2 synthesis by 7 and 14 day cultures although the increase was greatest when 7 day cultures were used. Our data indicate that there is a specific down-regulation of the mechanism(s) by which some inflammatory cytokines stimulate keratinocyte eicosanoid synthesis as cultured keratinocytes begin to differentiate

    Coherent structures in Dissipative Particle Dynamics simulations of the transition to turbulence in compressible shear flows

    Get PDF
    We present simulations of coherent structures in compressible flows near the transition to turbulence using the Dissipative Particle Dynamics (DPD) method. The structures we find are remarkably consistent with experimental observations and DNS simulations of incompressible flows, despite a difference in Mach number of several orders of magnitude. The bifurcation from the laminar flow is bistable and shifts to higher Reynolds numbers when the fluid becomes more compressible. This work underlines the robustness of coherent structures in the transition to turbulence and illustrates the ability of particle-based methods to reproduce complex non-linear instabilities.Comment: 4 pages, 5 figure

    Quasicircular inspirals and plunges from nonspinning effective-one-body Hamiltonians with gravitational self-force information

    No full text
    The self-force program aims at accurately modeling relativistic two-body systems with a small mass ratio (SMR). In the context of the effective-one-body (EOB) framework, current results from this program can be used to determine the effective metric components at linear order in the mass ratio, resumming post-Newtonian (PN) dynamics around the test-particle limit in the process. It was shown in [Akcay et al., Phys. Rev. D 86 (2012)] that, in the original (standard) EOB gauge, the SMR contribution to the metric component gtteffg^\text{eff}_{tt} exhibits a coordinate singularity at the light-ring (LR) radius. In this paper, we adopt a different gauge for the EOB dynamics and obtain a Hamiltonian that is free of poles at the LR, with complete circular-orbit information at linear order in the mass ratio and non-circular-orbit and higher-order-in-mass-ratio terms up to 3PN order. We confirm the absence of the LR-divergence in such an EOB Hamiltonian via plunging trajectories through the LR radius. Moreover, we compare the binding energies and inspiral waveforms of EOB models with SMR, PN and mixed SMR-3PN information on a quasi-circular inspiral against numerical-relativity predictions. We find good agreement between NR simulations and EOB models with SMR-3PN information for both equal and unequal mass ratios. In particular, when compared to EOB inspiral waveforms with only 3PN information, EOB Hamiltonians with SMR-3PN information improves the modeling of binary systems with small mass ratios q≲1/3q \lesssim 1/3, with a dephasing accumulated in ∼\sim30 gravitational-wave (GW) cycles being of the order of few hundredths of a radian up to 4 GW cycles before merger

    Universal and wide shear zones in granular bulk flow

    Get PDF
    We present experiments on slow granular flows in a modified (split-bottomed) Couette geometry in which wide and tunable shear zones are created away from the sidewalls. For increasing layer heights, the zones grow wider (apparently without bound) and evolve towards the inner cylinder according to a simple, particle-independent scaling law. After rescaling, the velocity profiles across the zones fall onto a universal master curve given by an error function. We study the shear zones also inside the material as function of both their local height and the total layer height.Comment: Minor corrections, accepted for PRL (4 pages, 6 figures
    • …
    corecore