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Coherent structures in dissipative particle dynamics simulations of the transition to turbulence
in compressible shear flows
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We present simulations of coherent structures in compressible flows near the transition to turbulence using
the dissipative particle dynamics method. The structures we find are remarkably consistent with experimental
observations and direct numerical simulations �DNS� simulations of incompressible flows, despite a difference
in Mach number of several orders of magnitude. The bifurcation from the laminar flow is bistable and shifts to
higher Reynolds numbers when the fluid becomes more compressible. This work underlines the robustness of
coherent structures in the transition to turbulence and illustrates the ability of particle-based methods to
reproduce complex nonlinear instabilities.
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The transition to turbulence in parallel shear flows such as
pressure-driven channel flow or flow in a pipe is one of the
classic problems of fluid mechanics. Until recently even pre-
dicting the correct order of magnitude for the transitional
Reynolds number Re was problematic. This situation has
changed with the discovery of exact nonlinear solutions of
the Navier-Stokes equations �1–6�. These solutions are domi-
nated by streaks and streamwise vortices—low-dimensional
coherent structures observed experimentally in wall-shear
flows �7� which are generated via the self-sustaining process
�SSP� proposed by Waleffe �8�. In the SSP, the counter-
rotating quasistreamwise vortices redistribute momentum
along the wall-normal axis, creating spanwise modulations
of the streamwise velocity, known as streaks. The streaks in
turn are subject to a Kelvin-Helmholtz-like instability due to
the large velocity gradient across their surface. Nonlinear
interactions between the instability modes couple back to the
original streamwise vortices thus closing the cycle. Even
though the exact solutions are linearly unstable, they have
been shown to control the transition to turbulence and turbu-
lent dynamics at moderate Re �6,9–14�. This scenario �15,16�
has emerged from a combination of intricate experiments
�9,10�, large-scale numerical studies �1–6,11–14�, and model
equations studies �8,17�.

In this Rapid Communication we study the robustness of
the coherent structures and the self-sustaining process at the
onset of turbulence in compressible flows using a particle
based method, the so-called dissipative particle dynamics or
DPD simulation method �18,19�. Such a simulation method
represents a fluid by discrete interacting particles whose mo-
tion converges to hydrodynamic behavior on length scales
larger than the typical interparticle distance. Our results not
only illustrate the surprising robustness of the coherent struc-
tures �7,15,16� to thermal fluctuations and compressibility
effects, but also show that studies of the transition to turbu-

lence provide a very attractive and informative testbed for
assessing the strengths and weaknesses of particle-based
simulation methods. Lattice-Boltzmann methods �20� have
already been successfully applied in supercomputer turbu-
lence studies, similar to flow past a car �21�; we demonstrate
here that the transition to turbulence can be studied effec-
tively on a regular single node computer and that the DPD
results throw new light on the robustness of the transition
mechanism as well as on the simulation method itself.

DPD is a well-tested and documented �18,19� off-lattice
method to simulate the Navier-Stokes equations. Its popular-
ity is partly due to the ease of extending it to multiphase and
viscoelastic flows. A limitation of the method which is not
often stressed but which will come to the foreground here is
that particle interactions have intrinsic time scales such that a
DPD fluid is highly compressible.

For plane Couette and pipe flows we find that at large
enough Re, there is a hysteretic transition to a weakly turbu-
lent state dominated by coherent structures similar to those
present in direct numerical simulations �DNS� and
experiments—see Figs. 1 and 2. As the compressibility in-
creases, the transition to turbulence shifts to higher Reynolds
numbers and becomes less abrupt and possibly even continu-
ous, but the overall features in our fluid with high compress-
ibility and strong thermal fluctuations are similar to those of
incompressible fluids without thermal fluctuations.

DPD simulation method. In DPD one integrates Newton’s
equations for a system of unit-mass particles that represent
parcels of fluid. Forces between particles are chosen so as to
optimize the convergence to hydrodynamic behavior on
length scales of a few particles—a rationale that is similar to
that of the lattice-Boltzmann method �20�, where micro-
scopic fidelity is also sacrificed to obtain a computationally
efficient representation of hydrodynamics beyond the lattice
scale. The DPD interparticle forces are pairwise and consist
of three contributions: a soft-repulsion conservative compo-
nent fc=a�1−r�, a dissipative component fd=−�

�1−r�1/2��v� · r̂� that tends to reduce the difference in particle

velocities �v� , and a stochastic component fr=��1−r�1/4��t�.
The constants a, �, and � define the amplitude of each of the
components; r is the distance between the particles and r̂ is
the unit vector in the direction of r�. The range of interaction
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is customarily set to 1. A Gaussian-distributed random vari-
able � with unit variance defines the evolution of random
interactions. The amplitude � and the form of the dissipative
and random forces are chosen so that a DPD fluid at rest
satisfies the fluctuation-dissipation theorem with temperature
T: �2= �2�kT /�t�. The absorption of a factor �1 /�t into � is
necessary to converge properly to a continuum limit for
small time steps �19�. An important though seldom stressed
point of DPD is that in order to converge quickly to hydro-
dynamic length scales upon coarse graining, the three force
components have to be of roughly the same size. This effec-
tively limits the parameters �a ,� ,kT� to the range 0.1–10 in
DPD units, and implies that density fluctuations, viscous in-
teraction, and thermal diffusion all take place on similar time
scales. On the particle scale, DPD thus models a compress-
ible and hot sluggish fluid. In our simulations, we focus on
the effect of the compressibility on the transition to turbu-
lence. One should keep in mind, however, that the thermal
fluctuations can also be important—even though the thermal
velocities vth are much smaller than the flow velocity scale U
�in our case typically vth /U�10−2�, they determine a natural
Reynolds number above which the flow will become un-
stable even without external perturbations, because the ther-
mal fluctuations are sufficient to destabilize the flow due to
the subcritical nature of the instability.

Flow domains. Simulations were carried out in two clas-
sical geometries: flow between two plates y= �h sliding

with opposite velocities �U along each other �plane Couette
flow�, and pressure-driven flow in a pipe created by applying
a constant force in the flow direction to every particle. The
simulation box for the plane Couette geometry has dimen-
sions 60�20�40 in the streamwise �velocity� x, gradient
direction y, and spanwise direction z, and is periodic in the x
and z directions. The DPD parameters are �a ,� ,kT�
= �8,1 ,0.35� unless stated otherwise. The density is 	=4,
corresponding to N=192 000 particles in the system. The
parameter values for pipe flow are similar and given in the
caption of Fig. 2.

To impose the no-slip boundary conditions at the walls,
we employ the method introduced by Revenga et al. �22,23�
for two-dimensional simulations. Here, the walls are mod-
eled by an immobile continuum DPD medium of uniform
density which interacts with the bulk particles �see �24� for
details�. We have checked that in all our runs the velocity
difference between a wall and the first layer of particles close
to the wall is indeed negligibly small.

Reynolds and Mach numbers. In our simulations, we char-
acterize the flow by two parameters: the Reynolds number,
defined as Re=hU /
 for Couette flow �for pipe flow Re
=dU /
, where U is the averaged streamwise velocity and d
the pipe diameter�, and the Mach number Ma=U /c, where c
is the sound velocity. We empirically obtain c by measuring
the speed of propagation of a density pulse directly, yielding
c=4.4 for the parameter set mentioned above. The sound

FIG. 1. �Color online� A pair of streaks in compressible plane Couette flow at Re=1400 and Ma=8. Color contours denote the streamwise
deviation from the laminar flow, vector fields denote the average in-plane motion. �a� Streamwise-direction view, showing x-averaged
velocities. �b� Flow gradient-direction view at y=0. The fast streak shows a clear sinusoidal inflection.

FIG. 2. �Color online� Snapshots of streaky pipe flow averaged over the pipe length. The simulation box has pipe diameter d=60 and
periodic length l=126. DPD parameters are �a ,� ,kT�= �5,1 ,0.2�, density 	=4, N=1 425 026, yielding 
=0.2, c�4.2, and Re /Ma=1260.
�a� A four-streak configuration at Re=1700. �b�–�d� Three different snapshots at Re=2700. These states and the stochastic hopping between
them are similar to those observed in experiments and in DNS of incompressible flows �9,12�.
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velocity can also be estimated by c���p / 	�		T based on the
virial expansion for the pressure p�	 ,T�, which typically
yields estimates within 20% of our direct measurements. The
kinematic viscosity was measured from the laminar shear
startup and was found to be 
=0.23. Since we vary U keep-
ing other parameters fixed, we report our data in terms of the
ratio Re /Ma=hc /
, which is of order 90–220 �Ma�2–5�.
Thus, we are sampling a different parameter range than ac-
cessible in experiments �9,10� and theory �1–6,11–14�.

Results for plane Couette flow. To quantify the influence
of the compressibility on the transition to turbulence, we
focus on the plane Couette geometry. The qualitative features
of the velocity field are in agreement with the SSP predic-
tions: Fig. 1�a� shows the streamwise vortices and streaks at
Re=1400. Moreover, as Fig. 1�b� shows, the streaks have a
slight sinusoidal modulation in the streamwise-spanwise
plane, in agreement with the SSP scenario that a Kelvin-
Helmholtz-type instability transfers energy back into the vor-
tices. Finally, the mean velocity profile of Fig. 3�a� strongly
deviates from the laminar profile in the way typical for tur-
bulent flow. The mean density of the system, plotted in Fig.
3�b�, deviates slightly from its equilibrium value, which em-
phasizes the compressible nature of our fluid.

The streaky profile in plane Couette flow tends to have
well-defined modes exhibiting an integer number of streak
and vortex pairs that are fairly persistent in time. The bifur-
cation point and the dominant threshold mode depend on the
Mach number. For low Re/Ma, the first mode appearing is
typically a one-pair streak-vortex configuration as shown in
Fig. 1, while for higher Re/Ma our simulations exhibit a
bifurcation towards a two-pair configuration. Higher-order
configurations appear as the Reynolds number is increased
further and switching between configurations becomes more
frequent.

Reproducibility of the dynamics observed close to the
threshold allows examination of the transition in terms of the
bifurcation diagram of Fig. 4. We plot the deviation A of the
normalized profile U�y� /U from the laminar flow for a series
of states initialized at regular intervals in Re, marked with
circles. The lower curve denotes the two-pair modes which

bifurcate spontaneously from the laminar state. The upper
curve denotes one-pair modes that are created by initially
driving all the particles with an additional external force term
with the desired symmetry. The vortices that are thus created
either persist or relaminarize after the forcing is turned off.
The open circles on this branch denote states obtained this
way. On both branches, the states can be traced smoothly by
adiabatically increasing and/or decreasing the driving rate,
thereby producing the continuous curves. The fact that the
segments connect perfectly shows that the amplitude of tur-
bulent perturbations is a well-defined function of Re and that
the adjustment of U can be considered adiabatic.

Contrary to the results for incompressible flows, the bifur-
cation observed in the lower curve of Fig. 4 appears continu-
ous in Re rather than jumplike. At this point we are not sure
which property underlies this qualitative difference in the
onset dynamics—compressibility, finite temperature T, or fi-
nite size. One possibility is that the two-pair mode has an
instability threshold smaller than the typical fluctuating ve-
locities while the resulting nonlinear branch lies so low that
the transition appears continuous in Re. At the same time, the
forced one-pair state has presumably a higher instability
threshold �since its upper branch is higher than the upper
branch of the two-pair mode� and when tracked down along
the upper branch, still exhibits a jump back to the laminar
flow.

We now proceed to examine how these features change
when we change the compressibility and hence the Mach
number Ma by tuning the repulsive force strength a. Figure 5
shows seven upper branches for a range of Ma. The initial
states are created by seeding one-pair modes at regularly
spaced intervals in Re, followed by a slow adjustment of the
conservative force strength a towards the values a
=3,4 ,5 ,6 ,8 ,10,13. The corresponding sound velocities are
c�2.8,3.2,3.5,3.8,4.4,4.9,5.5, and so for fixed driving ve-

FIG. 3. �Color online� Mean streamwise velocity U�y� and den-
sity 	�y� for the flow snapshot shown in Fig. 1 �solid�, with the
initial t=0 state �dotted� shown for comparison. �a� The mean ve-
locity U�y� develops a sinusoidal deviation from the linear profile
as coherent structures develop. �b� As a result of the compressibility
of the fluid, the density profile 	�y� shows a slight bulge at the
center of the cell.

FIG. 4. �Color online� Bistability in the bifurcation from laminar
flow at Re /Ma=190. Shown is the maximum deviation A of the
mean profile U�y� from linearity, A=maxy	�U�y� /U−y /h�	. Ap-
proaching from the laminar state, a smooth �forward� transition to-
wards a two-pair mode is observed, which becomes unstable at
Re�1200. A stable one-pair mode is found by initial forcing of a
pair of rolls. Decreasing the driving rate results in a jump �subcriti-
cal� transition back to the laminar state.
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locity the Mach numbers of these runs varies by a factor of 2.
Subsequent interpolation of the states by adiabatic adjust-
ment of the driving rate then results in the curves shown in
the figure. Clearly there is an unmistakable suppression of
the turbulence as the compressibility increases: the turbulent
amplitude decreases and the onset shifts to larger Re. In ad-
dition the bistable jump behavior changes gradually into an
apparently smooth transition as the compressibility increases.

Results for pipe flow. Figure 2 shows snapshots of our
results for pipe flow for two Reynolds numbers Re=1700
and Re=2700. These results are consistent with the SSP sce-
nario and are similar to those found in experiments and
simulations of incompressible flows �9,10,12,15,16�. They
also resemble exact solutions of the incompressible Navier-
Stokes equations �4,5�. Streaks, visible as colored contours
where the downstream velocity is higher �red� or lower
�blue� than average, are stabilized by the streamwise vortices
�vectors�. As in incompressible flows �12�, we observe dy-
namical transitions between these states. We leave a detailed
study of this process for the future.

Conclusion. DPD simulations reproduce the qualitative
features of the exact coherent structures in remarkable detail.
Considering the large degree of compressibility in DPD flu-
ids, the fact that the phenomenology differs so little consti-
tutes support for the SSP �8� as the scenario for organization
of turbulence at moderate Reynolds numbers. The depen-
dence of turbulence amplitudes on Ma in the DPD fluid pro-
vides clear evidence for a suppressing effect of the com-
pressibility on the transition to turbulence, with apparently a
crossover to a continuous transition in a fluctuating fluid.

Further potential of the method lies in its flexibility in
incorporating interactions between fluid elements. DPD is
very easy to program, and our simulations with over 105

particles are quite feasible on a single node computer. Tur-
bulence in multiphase and viscoelastic flows �25�, and in
other complex fluids, clearly seems within reach.

We thank Bruno Eckhardt and Pep Español for valuable
discussions, the EU network PHYNECS and Dutch science
foundations NWO and FOM for support, and the national
computer center SARA for computer time.
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FIG. 5. �Color online� Relaminarization in a series of runs with
increasing compressibility. The box size is 48�16�32. One-pair
modes are initialized at regular intervals in Re, with the sound
velocities ranging from c�5.5 �red� to c�2.8 �blue� and tracked
down by slowly decreasing the driving rate. The resulting curves
show that the compressibility decreases the amplitude of the turbu-
lent state and the abruptness of the transition.
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