127 research outputs found

    Oxidative stress and endothelial function in normal pregnancy versus pre-eclampsia, a combined longitudinal and case control study

    Get PDF
    Background: Pre-eclampsia (PE) is related to an impaired endothelial function. Endothelial dysfunction accounts for altered vascular reactivity, activation of the coagulation cascade and loss of vascular integrity. Impaired endothelial function originates from production of inflammatory and cytotoxic factors by the ischemic placenta and results in systemic oxidative stress (OS) and an altered bioavailability of nitric oxide (·NO). The free radical ·NO, is an endogenous endothelium-derived relaxing factor influencing endothelial function. In placental circulation, endothelial release of ·NO dilates the fetal placental vascular bed, ensuring feto-maternal exchange. The Endopreg study was designed to evaluate in vivo endothelial function and to quantify in vitro OS in normal and pre-eclamptic pregnancies. Methods/design: The study is divided into two arms, a prospective longitudinal study and a matched case control study. In the longitudinal study, pregnant patients ≥18 years old with a singleton pregnancy will be followed throughout pregnancy and until 6 months post-partum. In the case control study, cases with PE will be compared to matched normotensive pregnant women. Maternal blood concentration of superoxide (O2·) and placental concentration of ·NO will be determined using EPR (electron paramagnetic resonance). Endothelial function and arterial stiffness will be evaluated using respectively Peripheral Arterial Tonometry (PAT), Flow-Mediated Dilatation (FMD) and applanation tonometry. Placental expression of eNOS (endothelial NOS) will be determined using immune-histochemical staining. Target recruitment will be 110 patients for the longitudinal study and 90 patients in the case-control study. Discussion: The results of Endopreg will provide longitudinal information on in vivo endothelial function and in vitro OS during normal pregnancy and PE. Adoption of these vascular tests in clinical practice potentially predicts patients at risk to develop cardiovascular events later in life after PE pregnancies. ·NO, O2·- and eNOS measurements provide further inside in the pathophysiology of PE

    Oxidative stress and endothelial function in normal pregnancy versus pre-eclampsia, a combined longitudinal and case control study

    Get PDF
    Background: Pre-eclampsia (PE) is related to an impaired endothelial function. Endothelial dysfunction accounts for altered vascular reactivity, activation of the coagulation cascade and loss of vascular integrity. Impaired endothelial function originates from production of inflammatory and cytotoxic factors by the ischemic placenta and results in systemic oxidative stress (OS) and an altered bioavailability of nitric oxide (·NO). The free radical ·NO, is an endogenous endothelium-derived relaxing factor influencing endothelial function. In placental circulation, endothelial release of ·NO dilates the fetal placental vascular bed, ensuring feto-maternal exchange. The Endopreg study was designed to evaluate in vivo endothelial function and to quantify in vitro OS in normal and pre-eclamptic pregnancies. Methods/design: The study is divided into two arms, a prospective longitudinal study and a matched case control study. In the longitudinal study, pregnant patients ≥18 years old with a singleton pregnancy will be followed throughout pregnancy and until 6 months post-partum. In the case control study, cases with PE will be compared to matched normotensive pregnant women. Maternal blood concentration of superoxide (O2·) and placental concentration of ·NO will be determined using EPR (electron paramagnetic resonance). Endothelial function and arterial stiffness will be evaluated using respectively Peripheral Arterial Tonometry (PAT), Flow-Mediated Dilatation (FMD) and applanation tonometry. Placental expression of eNOS (endothelial NOS) will be determined using immune-histochemical staining. Target recruitment will be 110 patients for the longitudinal study and 90 patients in the case-control study. Discussion: The results of Endopreg will provide longitudinal information on in vivo endothelial function and in vitro OS during normal pregnancy and PE. Adoption of these vascular tests in clinical practice potentially predicts patients at risk to develop cardiovascular events later in life after PE pregnancies. ·NO, O2·- and eNOS measurements provide further inside in the pathophysiology of PE

    A mutation update for the FLNC gene in myopathies and cardiomyopathies

    Get PDF
    Filamin C (FLNC) variants are associated with cardiac and muscular phenotypes. Originally, FLNC variants were described in myofibrillar myopathy (MFM) patients. Later, high-throughput screening in cardiomyopathy cohorts determined a prominent role for FLNC in isolated hypertrophic and dilated cardiomyopathies (HCM and DCM). FLNC variants are now among the more prevalent causes of genetic DCM. FLNC-associated DCM is associated with a malignant clinical course and a high risk of sudden cardiac death. The clinical spectrum of FLNC suggests different pathomechanisms related to variant types and their location in the gene. The appropriate functioning of FLNC is crucial for structural integrity and cell signaling of the sarcomere. The secondary protein structure of FLNC is critical to ensure this function. Truncating variants with subsequent haploinsufficiency are associated with DCM and cardiac arrhythmias. Interference with the dimerization and folding of the protein leads to aggregate formation detrimental for muscle function, as found in HCM and MFM. Variants associated with HCM are predominantly missense variants, which cluster in the ROD2 domain. This domain is important for binding to the sarcomere and to ensure appropriate cell signaling. We here review FLNC genotype–phenotype correlations based on available evidence

    A mutation update for the FLNC gene in myopathies and cardiomyopathies

    Get PDF
    Filamin C (FLNC) variants are associated with cardiac and muscular phenotypes. Originally, FLNC variants were described in myofibrillar myopathy (MFM) patients. Later, high-throughput screening in cardiomyopathy cohorts determined a prominent role for FLNC in isolated hypertrophic and dilated cardiomyopathies (HCM and DCM). FLNC variants are now among the more prevalent causes of genetic DCM. FLNC-associated DCM is associated with a malignant clinical course and a high risk of sudden cardiac death. The clinical spectrum of FLNC suggests different pathomechanisms related to variant types and their location in the gene. The appropriate functioning of FLNC is crucial for structural integrity and cell signaling of the sarcomere. The secondary protein structure of FLNC is critical to ensure this function. Truncating variants with subsequent haploinsufficiency are associated with DCM and cardiac arrhythmias. Interference with the dimerization and folding of the protein leads to aggregate formation detrim

    Fluorescence correlation spectroscopy of the binding of nucleotide excision repair protein XPC-hHr23B with DNA substrates

    Get PDF
    The interaction of the nucleotide excision repair (NER) protein dimeric complex XPC-hHR23B, which is implicated in the DNA damage recognition step, with three Cy3.5 labeled 90-bp double-stranded DNA substrates (unmodified, with a central unpaired region, and cholesterol modified) and a 90-mer single-strand DNA was investigated in solution by fluorescence correlation spectroscopy. Autocorrelation functions obtained in the presence of an excess of protein show larger diffusion times (τ d) than for free DNA, indicating the presence of DNA-protein bound complexes. The fraction of DNA bound (θ), as a way to describe the percentage of protein bound to DNA, was directly estimated from FCS data. A significantly stronger binding capability for the cholesterol modified substrate (78% DNA bound) than for other double-stranded DNA substrates was observed, while the lowest affinity was found for the single-stranded DNA (27%). This is in accordance with a damage recognition role of the XPC protein. The similar affinity of XPC for undamaged and 'bubble' DNA sub

    Oxidative stress in healthy pregnancy and preeclampsia is linked to chronic inflammation, iron status and vascular function

    Get PDF
    Background During normal pregnancy, placental oxidative stress (OS) is present during all three trimesters and is necessary to obtain normal cell function. However, if OS reaches a certain level, pregnancy complications might arise. In preeclampsia (PE), a dangerous pregnancy specific hypertensive disorder, OS induced in the ischemic placenta causes a systemic inflammatory response and activates maternal endothelial cells. In this study, we aimed to quantify superoxide concentrations (as a measure of systemic OS) using electron paramagnetic resonance (EPR) and correlate them to markers of systemic inflammation, iron status and vascular function. Methods Fifty-nine women with a healthy pregnancy (HP), 10 non-pregnant controls (NP) and 28 PE patients (32±3.3weeks) were included. During HP, blood samples for superoxide, neutrophil to lymphocyte ratio (NLR), mean platelet volume (MPV) and iron status were taken at 10, 25 and 39 weeks. Vascular measurements for arterial stiffness (carotid-femoral pulse wave velocity (CF-PWV), augmentation index (AIx), augmentation Pressure (AP)) and microvascular endothelial function (reactive hyperemia index (RHI)) were performed at 35 weeks. In PE, all measurements were performed at diagnosis. CMH (1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine) was used as spin probe for EPR, since the formed CM radical corresponds to the amount of superoxide. Results Superoxide concentration remains stable during pregnancy (p = 0.92), but is significantly higher compared to the NP controls (p<0.0001). At 25 weeks, there is a significant positive correlation between superoxide and ferritin concentration. (p = 0.04) In PE, superoxide, systemic inflammation and iron status are much higher compared to HP (all p<0.001). During HP, superoxide concentrations correlate significantly with arterial stiffness (all p<0.04), while in PE superoxide is significantly correlated to microvascular endothelial function (p = 0.03). Conclusions During HP there is an increased but stable oxidative environment, which is correlated to ferritin concentration. If superoxide levels increase, there is an augmentation in arterial stiffness. In PE pregnancies, systemic inflammation and superoxide concentrations are higher and result in a deterioration of endothelial function. Together, these findings support the hypothesis that vascular function is directly linked to the amount of OS and that measurement of OS in combination with vascular function tests might be used in the prediction of PE

    Sex differences in cardiovascular complications and mortality in hospital patients with covid-19: registry based observational study

    Get PDF
    Objective To assess whether the risk of cardiovascular complications of covid-19 differ between the sexes and to determine whether any sex differences in risk are reduced in individuals with pre-existing cardiovascular disease. Design Registry based observational study. Setting 74 hospitals across 13 countries (eight European) participating in CAPACITY-COVID (Cardiac complicAtions in Patients With SARS Corona vIrus 2 regisTrY), from March 2020 to May 2021 Participants All adults (aged ≥18 years), predominantly European, admitted to hospital with highly suspected covid-19 disease or covid-19 disease confirmed by positive laboratory test results (n=11 167 patients). Main outcome measures Any cardiovascular complication during admission to hospital. Secondary outcomes were in-hospital mortality and individual cardiovascular complications with ≥20 events for each sex. Logistic regression was used to examine sex differences in the risk of cardiovascular outcomes, overall and grouped by pre-existing cardiovascular disease. Results Of 11 167 adults (median age 68 years, 40% female participants) included, 3423 (36% of whom were female participants) had pre-existing cardiovascular disease. In both sexes, the most common cardiovascular complications were supraventricular tachycardias (4% of female participants, 6% of male participants), pulmonary embolism (3% and 5%), and heart failure (decompensated or de novo) (2% in both sexes). After adjusting for age, ethnic group, pre-existing cardiovascular disease, and risk factors for cardiovascular disease, female individuals were less likely than male individuals to have a cardiovascular complication (odds ratio 0.72, 95% confidence interval 0.64 to 0.80) or die (0.65, 0.59 to 0.72). Differences between the sexes were not modified by pre-existing cardiovascular disease; for the primary outcome, the female-to-male ratio of the odds ratio in those without, compared with those with, pre-existing cardiovascular disease was 0.84 (0.67 to 1.07). Conclusions In patients admitted to hospital for covid-19, female participants were less likely than male participants to have a cardiovascular complication. The differences between the sexes could not be attributed to the lower prevalence of pre-existing cardiovascular disease in female individuals. The reasons for this advantage in female individuals requires further research

    Environmental and genetic influences on early attachment

    Get PDF
    Attachment theory predicts and subsequent empirical research has amply demonstrated that individual variations in patterns of early attachment behaviour are primarily influenced by differences in sensitive responsiveness of caregivers. However, meta-analyses have shown that parenting behaviour accounts for about one third of the variance in attachment security or disorganisation. The exclusively environmental explanation has been challenged by results demonstrating some, albeit inconclusive, evidence of the effect of infant temperament. In this paper, after reviewing briefly the well-demonstrated familial and wider environmental influences, the evidence is reviewed for genetic and gene-environment interaction effects on developing early attachment relationships. Studies investigating the interaction of genes of monoamine neurotransmission with parenting environment in the course of early relationship development suggest that children's differential susceptibility to the rearing environment depends partly on genetic differences. In addition to the overview of environmental and genetic contributions to infant attachment, and especially to disorganised attachment relevant to mental health issues, the few existing studies of gene-attachment interaction effects on development of childhood behavioural problems are also reviewed. A short account of the most important methodological problems to be overcome in molecular genetic studies of psychological and psychiatric phenotypes is also given. Finally, animal research focusing on brain-structural aspects related to early care and the new, conceptually important direction of studying environmental programming of early development through epigenetic modification of gene functioning is examined in brief
    corecore