340 research outputs found

    Analysis of ultra-short bunches in free-electron lasers

    Get PDF
    Free-electron lasers (FELs) operate at wavelengths from millimeter waves through hard x-rays. At x-ray wavelengths, FELs typically rely on self-amplified spontaneous emission (SASE). Typical SASE emission contains multiple temporal 'spikes' which limit the longitudinal coherence of the optical output; hence, alternate schemes that improve on the longitudinal coherence of the SASE emission are of interest. In this paper, we consider electron bunches that are shorter than the SASE spike separation. In such cases, the spontaneously generated radiation consists of a single optical pulse with better longitudinal coherence than is found in typical SASE FELs. To investigate this regime, we use two FEL simulation codes. One (MINERVA) uses the slowly-varying envelope approximation (SVEA) which breaks down for extremely short pulses. The second (PUFFIN) is a particle-in-cell simulation code that is considered to be a more complete model of the underlying physics and which is able to simulate very short pulses. We first anchor these codes by showing that there is substantial agreement between the codes in simulation of the SPARC SASE FEL experiment at ENEA Frascati. We then compare the two codes for simulations using electron bunch lengths that are shorter than the SASE slice separation. The comparisons between the two codes for short bunch simulations elucidate the limitations of the SVEA in this regime but indicate that the SVEA can treat short bunches that are comparable to the cooperation length

    On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth

    Get PDF
    We report ultra-broadband supercontinuum generation in high-confinement Si3N4 integrated optical waveguides. The spectrum extends through the visible (from 470 nm) to the infrared spectral range (2130 nm) comprising a spectral bandwidth wider than 495 THz, which is the widest supercontinuum spectrum generated on a chi

    Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy

    Get PDF
    Objective Recently, de novo SCN8A missense mutations have been identified as a rare dominant cause of epileptic encephalopathies. Functional studies on the first described case demonstrated gain-of-function effects of the mutation. We describe a novel de novo mutation of SCN8A in a patient with epileptic encephalopathy, and functional characterization of the mutant protein. Design Whole exome sequencing was used to discover the variant. We generated a mutant cDNA, transfected HEK293 cells, and performed Western blotting to assess protein stability. To study channel functional properties, patch-clamp experiments were carried out in transfected neuronal ND7/23 cells. Results The proband exhibited seizure onset at 6 months of age, diffuse brain atrophy, and more profound developmental impairment than the original case. The mutation p.Arg233Gly in the voltage sensing transmembrane segment D1S4 was present in the proband and absent in both parents. This mutation results in a temperature-sensitive reduction in protein expression as well as reduced sodium current amplitude and density and a relative increased response to a slow ramp stimulus, though this did not result in an absolute increased current at physiological temperatures. Conclusion The new de novo SCN8A mutation is clearly deleterious, resulting in an unstable protein with reduced channel activity. This differs from the gain-of-function attributes of the first SCN8A mutation in epileptic encephalopathy, pointing to heterogeneity of mechanisms. Since Nav1.6 is expressed in both excitatory and inhibitory neurons, a differential effect of a loss-of-function of Nav1.6 Arg223Gly on inhibitory interneurons may underlie the epilepsy phenotype in this patient

    Low bone mineral density in ambulatory persons with cerebral palsy? A systematic review

    Get PDF
    Purpose: Non-ambulatory persons with cerebral palsy are prone to low bone mineral density. In ambulatory persons with cerebral palsy, bone mineral density deficits are expected to be small or absent, but a consensus conclusion is lacking. In this systematic review bone mineral density in ambulatory persons with cerebral palsy (Gross Motor Function Classification Scales I–III) was studied. Materials and methods: Medline, Embase, and Web of Science were searched. According to international guidelines, low bone mineral density was defined as Z-score ≤ −2.0. In addition, we focused on Z-score ≤ −1.0 because this may indicate a tendency towards low bone mineral density. Results: We included 16 studies, comprising 465 patients aged 1–65 years. Moderate and conflicting evidence for low bone mineral density (Z-score ≤ −2.0) was found for several body parts (total proximal femur, total body, distal femur, lumbar spine) in children with Gross Motor Function Classification Scales II and III. We found no evidence for low bone mineral density in children with Gross Motor Function Classification Scale I or adults, although there was a tendency towards low bone mineral density (Z-score ≤ −1.0) for several body parts. Conclusions: Although more high-quality research is needed, results indicate that deficits in bone mineral density are not restricted to non-ambulatory people with cerebral palsy.Implications for Rehabilitation Although more high-quality research is needed, including adults and fracture risk assessment, the current study indicates that deficits in bone mineral density are not restricted to non-ambulatory people with CP. Health care professionals should be aware that optimal nutrition, supplements on indication, and an active lifestyle, preferably with weight-bearing activities, are important in ambulatory people with CP, also from a bone quality point-of-view. If indicated, medication and fall prevention training should be prescribed

    Identification of Domains and Amino Acids Essential to the Collagen Galactosyltransferase Activity of GLT25D1

    Get PDF
    Collagen is modified by hydroxylation and glycosylation of hydroxylysine residues. This glycosylation is initiated by the β1,O galactosyltransferases GLT25D1 and GLT25D2. The structurally similar protein cerebral endothelial cell adhesion molecule CEECAM1 was previously reported to be inactive when assayed for collagen glycosyltransferase activity. To address the cause of the absent galactosyltransferase activity, we have generated several chimeric constructs between the active human GLT25D1 and inactive human CEECAM1 proteins. The assay of these chimeric constructs pointed to a short central region and a large C-terminal region of CEECAM1 leading to the loss of collagen galactosyltransferase activity. Examination of the three DXD motifs of the active GLT25D1 by site-directed mutagenesis confirmed the importance of the first (amino acids 166–168) and second motif (amino acids 461–463) for enzymatic activity, whereas the third one was dispensable. Since the second DXD motif is incomplete in CEECAM1, we have restored the motif by introducing the substitution S461D. This change did not restore the activity of the C-terminal region, thereby showing that additional amino acids were required in this C-terminal region to confer enzymatic activity. Finally, we have introduced the substitution Q471R-V472M-N473Q-P474V in the CEECAM1-C-terminal construct, which is found in most animal GLT25D1 and GLT25D2 isoforms but not in CEECAM1. This substitution was shown to partially restore collagen galactosyltransferase activity, underlining its importance for catalytic activity in the C-terminal domain. Because multiple mutations in different regions of CEECAM1 contribute to the lack of galactosyltransferase activity, we deduced that CEECAM1 is functionally different from the related GLT25D1 protein

    A genome-wide association study of rheumatoid arthritis without antibodies against citrullinated peptides

    Get PDF
    Introduction. Rheumatoid arthritis (RA) patients can be classified based on presence or absence of anticitrullinated peptide antibodies (ACPA) in their serum. This heterogeneity among patients may reflect important biological differences underlying the disease process. To date, the majority of genetic studies have focused on the ACPA-positive group. Therefore, our goal was to analyse the genetic risk factors that contribute to ACPA-negative RA. Methods. We performed a large-scale genome-wide association study (GWAS) in three Caucasian European cohorts comprising 1148 ACPA-negative RA patients and 6008 controls. All patients were screened using the Illumina Human Cyto-12 chip, and controls were genotyped using different genome-wide platforms. Population-independent analyses were carried out by means of logistic regression. Meta-analysis with previously published data was performed as follow-up for selected signals (reaching a total of 1922 ACPA-negative RA patients and 7087 controls). Imputation of classical HLA alleles, aminoacid residues and single nucleotide polymorphisms was undertaken. Results. The combined analysis of the studied cohorts resulted in identification of a peak of association in the HLA-region and several suggestive non-HLA associations. Meta-analysis with previous reports confirmed the association of the HLA region with this subset and an observed association in the CLYBL locus remained suggestive. The imputation and deep interrogation of the HLA region led to identification of a two aminoacid model (HLA-B at position 9 and HLA-DRB1 at position 11) that accounted for the observed genome-wide associations in this region. Conclusions. Our study shed light on the influence of the HLA region in ACPA-negative RA and identified a suggestive risk locus for this condition

    Extracellular matrix formation after transplantation of human embryonic stem cell-derived cardiomyocytes

    Get PDF
    Transplantation of human embryonic stem cell-derived cardiomyocytes (hESC-CM) for cardiac regeneration is hampered by the formation of fibrotic tissue around the grafts, preventing electrophysiological coupling. Investigating this process, we found that: (1) beating hESC-CM in vitro are embedded in collagens, laminin and fibronectin, which they bind via appropriate integrins; (2) after transplantation into the mouse heart, hESC-CM continue to secrete collagen IV, XVIII and fibronectin; (3) integrin expression on hESC-CM largely matches the matrix type they encounter or secrete in vivo; (4) co-transplantation of hESC-derived endothelial cells and/or cardiac progenitors with hESC-CM results in the formation of functional capillaries; and (5) transplanted hESC-CM survive and mature in vivo for at least 24 weeks. These results form the basis of future developments aiming to reduce the adverse fibrotic reaction that currently complicates cell-based therapies for cardiac disease, and to provide an additional clue towards successful engraftment of cardiomyocytes by co-transplanting endothelial cells
    corecore