7 research outputs found

    Litter inputs and phosphatase activity affect the temporal variability of organic phosphorus in a tropical forest soil in the Central Amazon

    Get PDF
    Purpose The tropical phosphorus cycle and its relation to soil phosphorus (P) availability are a major uncertainty in projections of forest productivity. In highly weathered soils with low P concentrations, plant and microbial communities depend on abiotic and biotic processes to acquire P. We explored the seasonality and relative importance of drivers controlling the fluctuation of common P pools via processes such as litter production and decomposition, and soil phosphatase activity. Methods We analyzed intra-annual variation of tropical soil phosphorus pools using a modified Hedley sequential fractionation scheme. In addition, we measured litterfall, the mobilization of P from litter and soil extracellular phosphatase enzyme activity and tested their relation to fluctuations in P- fractions. Results Our results showed clear patterns of seasonal variability of soil P fractions during the year. We found that modeled P released during litter decomposition was positively related to change in organic P fractions, while net change in organic P fractions was negatively related to phosphatase activities in the top 5 cm. Conclusion We conclude that input of P by litter decomposition and potential soil extracellular phosphatase activity are the two main factors related to seasonal soil P fluctuations, and therefore the P economy in P impoverished soils. Organic soil P followed a clear seasonal pattern, indicating tight cycling of the nutrient, while reinforcing the importance of studying soil P as an integrated dynamic system in a tropical forest context

    Lagging Response of Belowground Functional Traits to Environmental Cues in a Mature Amazonian Tropical Rainforest

    Get PDF
    Context/Purpose: The stress-dominance hypothesis (SDH) is a model of community assembly predicting that the relative importance of environmental filtering increases and competition decreases along a gradient of increasing environmental stress. Therefore, trait variation at the community level should increase as resources are more available. Although the SDH was designed to explain spatial changes in plant communities based on aboveground traits, it is possible that root communities show similar switches in strategies at temporal scales in response to pulses in resource availability. Methods: To test this hypothesis we sampled for two years the morphological changes in root systems in a mature tropical forest in Central Amazon. Thirty-six samples along a 500 m transect were taken each three months from February 2016 to February 2018, separating the uppermost organic layer (0-5 cm) from the mineral soil (5-15 cm). Besides root biomass, we scanned approximately 20% of the total root systems to calculate specific root length (SRL), average diameter (D), root tissue density (RTD), and branching index (BI). Spatially, we expected shifts from acquisitive to conservative syndromes as roots penetrate in the mineral soil. Temporarily, we hypothesized that traits associated with resource acquisition (SRL, SRTA, BI) will increase with soil moisture. Moreover, we expected that trait range will increase as resources become more available. Results: We found significant differences in biomass and morphological traits between the organic and mineral soils. We found no patterns between biomass increases in seasonality, but mean community traits change significantly with seasonal rain patterns. More interestingly, changes in mean and range values were more strongly associated with rain events three months before the collecting date, suggesting a lagging between rain events and belowground community responses. Conclusions: Belowground dynamics are structured spatially and temporarily in tropical forests, in synchrony with the availability of resources, as predicted by the SHD. Our results suggest that species tend to show similar traits during stressful times but diverge during acquisition periods. The results suggest a belowground dimension to niche segregation little explored in tropical biomes to date

    Fine roots stimulate nutrient release during early stages of leaf litter decomposition in a Central Amazon rainforest

    Get PDF
    Purpose Large parts of the Amazon rainforest grow on weathered soils depleted in phosphorus and rock-derived cations. We tested the hypothesis that in this ecosystem, fine roots stimulate decomposition and nutrient release from leaf litter biochemically by releasing enzymes, and by exuding labile carbon stimulating microbial decomposers. Methods We monitored leaf litter decomposition in a Central Amazon tropical rainforest, where fine roots were either present or excluded, over 188 days and added labile carbon substrates (glucose and citric acid) in a fully factorial design. We tracked litter mass loss, remaining carbon, nitrogen, phosphorus and cation concentrations, extracellular enzyme activity and microbial carbon and nutrient concentrations. Results Fine root presence did not affect litter mass loss but significantly increased the loss of phosphorus and cations from leaf litter. In the presence of fine roots, acid phosphatase activity was 43.2% higher, while neither microbial stoichiometry, nor extracellular enzyme activities targeting carbon- and nitrogen-containing compounds changed. Glucose additions increased phosphorus loss from litter when fine roots were present, and enhanced phosphatase activity in root exclusions. Citric acid additions reduced litter mass loss, microbial biomass nitrogen and phosphorus, regardless of fine root presence or exclusion. Conclusions We conclude that plant roots release significant amounts of acid phosphatases into the litter layer and mobilize phosphorus without affecting litter mass loss. Our results further indicate that added labile carbon inputs (i.e. glucose) can stimulate acid phosphatase production by microbial decomposers, highlighting the potential importance of plant-microbial feedbacks in tropical forest ecosystems

    Toward a coordinated understanding of hydro‐biogeochemical root functions in tropical forests for application in vegetation models

    No full text
    Tropical forest root characteristics and resource acquisition strategies are underrepresented in vegetation and global models, hampering the prediction of forest–climate feedbacks for these carbon-rich ecosystems. Lowland tropical forests often have globally unique combinations of high taxonomic and functional biodiversity, rainfall seasonality, and strongly weathered infertile soils, giving rise to distinct patterns in root traits and functions compared with higher latitude ecosystems. We provide a roadmap for integrating recent advances in our understanding of tropical forest belowground function into vegetation models, focusing on water and nutrient acquisition. We offer comparisons of recent advances in empirical and model understanding of root characteristics that represent important functional processes in tropical forests. We focus on: (1) fine-root strategies for soil resource exploration, (2) coupling and trade-offs in fine-root water vs nutrient acquisition, and (3) aboveground–belowground linkages in plant resource acquisition and use. We suggest avenues for representing these extremely diverse plant communities in computationally manageable and ecologically meaningful groups in models for linked aboveground–belowground hydro-nutrient functions. Tropical forests are undergoing warming, shifting rainfall regimes, and exacerbation of soil nutrient scarcity caused by elevated atmospheric CO2. The accurate model representation of tropical forest functions is crucial for understanding the interactions of this biome with the climate
    corecore