124 research outputs found

    Effect of strontium and cooling rate upon eutectic temperatures of A319 aluminum alloy

    Get PDF
    DTA analysis was used to investigate the solidification reactions of alloy A319 with either 12 or 136 ppm of Sr added. Strontium does not affect primary solidification of (Al) dendrites but modifies the kinetics of the (Al)–Si eutectic. The effects of Sr level and of cooling rate on the characteristic temperatures for the (Al)–Si and other eutectic reactions are described

    Effects of Grain Refining on Columnar-to-Equiaxed Transition in Aluminum Alloys

    Get PDF
    The effects of grain refining in ultra-pure aluminum, commercially pure aluminum (1050), and Al-7%Si binary alloy were investigated, using different additions of Al-10%Ti, Al-5%Ti-1%B, and Al-4%B master alloys. Thermal analysis and metallography were used to assess the variations in microstructure resulting from these additions, at solidification rates of 0.8°C/s and ~10°C/s. The results revealed that addition of Al-4%B to ultra-pure aluminum forms AlB12 and AlB2 which have no grain-refining effect. Without grain refiner addition, the pure aluminum microstructure exhibits a mixture of columnar and equiaxed grains. Addition of 30ppm Ti is sufficient to promote equiaxed grains at ~10°C/s but requires addition of 1000 ppm B to obtain similar results at 0.8°C/s. Increasing the Si content to 7% reduces the initial grain size of pure aluminum from 2800 μm to ~1850 μm, and further to 450 μm with ddition of ~500ppm B. In commercial aluminum, the B reacts with traces of Ti forming Al3Ti and TiB2 phases which are active grain-refiners. In Al-7%Si, Ti reacts with Si forming (Al,Si)2Ti phase, which is a poor refining agent. This phenomenon is termed poisoning. No interaction between B and Si is observed in the commercial aluminum or Al-7%Si alloy when B is added

    Effect of Sr-P Interaction on the Microstructure and Tensile Properties of A413.0 Type Alloys

    Get PDF
    The present study was performed on low magnesium A413.0 type alloys. The results show that strontium (Sr) is mainly concentrated in the silicon particles. Overmodification occurs when Sr precipitates in the form of Al2SrSi2, which takes place over a wide range of temperatures. The first peak occurs following the precipitation of α-Al, the second peak is merged with the precipitation of eutectic silicon (Si), and the third peak is a posteutectic reaction. Introduction of phosphorus (P) to Sr-modified alloys leads to the formation of (Al,P,Sr)2O5 compound, which reduces the modification effectiveness of Sr. Therefore, in the presence of P, the amount of added Sr should exceed 200 ppm. For the same levels of P, the tensile parameters of well modified alloys (233 ppm Sr) are relatively higher than those partially modified with Sr (about 60 ppm Sr) containing the same amount of P. During solution heat treatment, coarsening of the eutectic Si particles occurs by the growth of some particles at the expense of the dissolution of the smaller ones, as well as by the collision of nearby particles

    Environmental controls, emergent scaling, and predictions of greenhouse gas (GHG) fluxes in coastal salt marshes

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 123 (2018): 2234-2256, doi:10.1029/2018JG004556.Coastal salt marshes play an important role in mitigating global warming by removing atmospheric carbon at a high rate. We investigated the environmental controls and emergent scaling of major greenhouse gas (GHG) fluxes such as carbon dioxide (CO2) and methane (CH4) in coastal salt marshes by conducting data analytics and empirical modeling. The underlying hypothesis is that the salt marsh GHG fluxes follow emergent scaling relationships with their environmental drivers, leading to parsimonious predictive models. CO2 and CH4 fluxes, photosynthetically active radiation (PAR), air and soil temperatures, well water level, soil moisture, and porewater pH and salinity were measured during May–October 2013 from four marshes in Waquoit Bay and adjacent estuaries, MA, USA. The salt marshes exhibited high CO2 uptake and low CH4 emission, which did not significantly vary with the nitrogen loading gradient (5–126 kg · ha−1 · year−1) among the salt marshes. Soil temperature was the strongest driver of both fluxes, representing 2 and 4–5 times higher influence than PAR and salinity, respectively. Well water level, soil moisture, and pH did not have a predictive control on the GHG fluxes, although both fluxes were significantly higher during high tides than low tides. The results were leveraged to develop emergent power law‐based parsimonious scaling models to accurately predict the salt marsh GHG fluxes from PAR, soil temperature, and salinity (Nash‐Sutcliffe Efficiency = 0.80–0.91). The scaling models are available as a user‐friendly Excel spreadsheet named Coastal Wetland GHG Model to explore scenarios of GHG fluxes in tidal marshes under a changing climate and environment.National Oceanic and Atmospheric Administration Grant Numbers: NA09NOS4190153, NA14NOS4190145; National Science Foundation (NSF) Grant Numbers: 1705941, 1561941/1336911; USGS LandCarbon Program; NOAA National Estuarine Research Reserve Science Collaborative Grant Number: NA09NOS4190153 and NA14NOS41901452019-01-2

    Effect of Solidification Rate and Rare Earth Metal Addition on the Microstructural Characteristics and Porosity Formation in A356 Alloy

    Get PDF
    The present study was performed on A356 alloy with the main aim of investigating the effects of La and Ce additions to 356 alloys (with and without 100 ppm Sr) on the microstructure and porosity formation in these alloys. Measured amounts of La, Ce, and Sr were added to the molten alloy. The results showed that, in the absence of Sr, addition of La and Ce leads to an increase in the nucleation temperature of the α-Al dendritic network with a decrease in the temperature of the eutectic Si precipitation, resulting in increasing the freezing range. Addition of 100 ppm Sr results in neutralizing these effects. The presence of La or Ce in the casting has a minor effect on eutectic Si modification, in spite of the observed depression in the eutectic temperature. It should be noted that Ce is more effective than La as an alternate modifying agent. According to the atomic radius ratio, rLa/rSi is 1.604 and rCe/rSi is 1.559, theoretically, which shows that Ce is relatively more effective than La. The present findings confirm that Sr is the most dominating modification agent. Interaction between rare earth (RE) metals and Sr would reduce the effectiveness of Sr. Although modification with Sr causes the formation of shrinkage porosity, it also reacts with RE-rich intermetallics, resulting in their fragmentation

    Carbon Dioxide Fluxes Reflect Plant Zonation and Belowground Biomass in a Coastal Marsh

    Get PDF
    Coastal wetlands are major global carbon sinks; however, they are heterogeneous and dynamic ecosystems. To characterize spatial and temporal variability in a New England salt marsh, greenhouse gas (GHG) fluxes were compared among major plant-defined zones during growing seasons. Carbon dioxide (CO2) and methane (CH4) fluxes were compared in two mensurative experiments during summer months (2012–2014) that included low marsh (Spartina alterniflora), high marsh (Distichlis spicata and Juncus gerardiidominated), invasive Phragmites australis zones, and unvegetated ponds. Day- and nighttime fluxes were also contrasted in the native marsh zones. N2O fluxes were measured in parallel with CO2 and CH4 fluxes, but were not found to be significant. To test the relationships of CO2 and CH4 fluxes with several native plant metrics, a multivariate nonlinear model was used. Invasive P. australis zones (−7 to −15 μmol CO2·m−2·s−1) and S. alterniflora low marsh zones (up to −14 μmol CO2·m−2·s−1) displayed highest average CO2 uptake rates, while those in the native high marsh zone (less than −2 μmol CO2·m−2·s−1) were much lower. Unvegetated ponds were typically small sources of CO2 to the atmosphere (\u3c0.5 μmol CO2·m−2·s−1). Nighttime emissions of CO2 averaged only 35% of daytime uptake in the low marsh zone, but they exceeded daytime CO2 uptake by up to threefold in the native high marsh zone. Based on modeling, belowground biomass was the plant metric most strongly correlated with CO2 fluxes in native marsh zones, while none of the plant variables correlated significantly with CH4 fluxes. Methane fluxes did not vary between day and night and did not significantly offset CO2 uptake in any vegetated marsh zones based on sustained global warming potential calculations. These findings suggest that attention to spatial zonation as well as expanded measurements and modeling of GHG emissions across greater temporal scales will help to improve accuracy of carbon accounting in coastal marshe

    Carbon Dioxide Fluxes Reflect Plant Zonation and Belowground Biomass in a Coastal Marsh

    Get PDF
    Coastal wetlands are major global carbon sinks; however, they are heterogeneous and dynamic ecosystems. To characterize spatial and temporal variability in a New England salt marsh, greenhouse gas (GHG) fluxes were compared among major plant-defined zones during growing seasons. Carbon dioxide (CO2) and methane (CH4) fluxes were compared in two mensurative experiments during summer months (2012–2014) that included low marsh (Spartina alterniflora), high marsh (Distichlis spicata and Juncus gerardiidominated), invasive Phragmites australis zones, and unvegetated ponds. Day- and nighttime fluxes were also contrasted in the native marsh zones. N2O fluxes were measured in parallel with CO2 and CH4 fluxes, but were not found to be significant. To test the relationships of CO2 and CH4 fluxes with several native plant metrics, a multivariate nonlinear model was used. Invasive P. australis zones (−7 to −15 μmol CO2·m−2·s−1) and S. alterniflora low marsh zones (up to −14 μmol CO2·m−2·s−1) displayed highest average CO2 uptake rates, while those in the native high marsh zone (less than −2 μmol CO2·m−2·s−1) were much lower. Unvegetated ponds were typically small sources of CO2 to the atmosphere (\u3c0.5 μmol CO2·m−2·s−1). Nighttime emissions of CO2 averaged only 35% of daytime uptake in the low marsh zone, but they exceeded daytime CO2 uptake by up to threefold in the native high marsh zone. Based on modeling, belowground biomass was the plant metric most strongly correlated with CO2 fluxes in native marsh zones, while none of the plant variables correlated significantly with CH4 fluxes. Methane fluxes did not vary between day and night and did not significantly offset CO2 uptake in any vegetated marsh zones based on sustained global warming potential calculations. These findings suggest that attention to spatial zonation as well as expanded measurements and modeling of GHG emissions across greater temporal scales will help to improve accuracy of carbon accounting in coastal marshe

    A experiência vivida das mulheres numa zona rural de Asientos, Aguascalientes durante o período climatérico

    Get PDF
    Introduction: Nursing care seeks the integrity of the person in all spheres of development and thus improves quality of life. Objective: To know the experience of women who are in the climacteric stage and who live in a rural area of the municipality of Asientos, Aguascalientes. Methodology: Qualitative study with Heiddeger's hermeneutic phenomenological approach. Seven women participated. Seven phenomenological interviews were conducted for the collection of information to guarantee the quality of the study. Results: The interviews lasted approximately 40 minutes. Nine units of meaning were obtained, which were divided into two groups: ontic and ontological. The ontic meaning units included: ignorance of climacteric as a stage of life, distress in climacteric and medical care during climacteric. The other group includes the ontological meaning units: sexual desire in darkness, absence of a partner, the family world and the climacteric period, transcendence in the climacteric period, and suffering in the climacteric period. Conclusion: Climacteric women have an influence on the sociocultural environment, repetitive patterns and scarce knowledge of the subject.Introducción: El cuidado de enfermería busca la integridad de la persona en todas sus esferas de desarrollo y con ello mejora calidad de vida. Objetivo: Conocer la experiencia que tienen las mujeres que cursan la etapa del climaterio y que viven en zona rural del municipio de Asientos, Aguascalientes. Metodología: Estudio cualitativo con enfoque fenomenológico hermenéutico de Heiddeger. Participaron 7 mujeres. Para la recolección de la información se realizaron siete entrevistas fenomenológicas, para garantizar la calidad del estudio. Resultados: Las entrevistas tuvieron una duración aproximada de 40 minutos. Se obtuvo 9 unidades de significado, las cuales se dividieron en dos grupos: óntico y ontológico. En las unidades de significado óntico se incluyó: desconocimiento del climaterio como etapa de la vida, angustia en el climaterio y atención medica durante el climaterio. El otro grupo abarca las unidades de significado ontológico integrado por: el deseo sexual en tinieblas, ausencia de compañero, el mundo familiar y el climaterio, trascendencia en el climaterio, sufrimiento en el climaterio. Conclusión: Las mujeres climatéricas tienen una influencia sobre el entorno sociocultural, patrones repetitivos y conocimientos escasos del tema.Resumo: Introdução: Os cuidados de enfermagem procuram a integridade da pessoa em todas as esferas de desenvolvimento e assim melhorar a qualidade de vida. Objectivo: Descobrir a experiência das mulheres na fase climatérica da vida que vivem numa zona rural do município de Asientos, Aguascalientes. Metodologia: Estudo qualitativo com a abordagem fenomenológica hermenêutica de Heiddeger. Sete mulheres participaram. Foram realizadas sete entrevistas fenomenológicas para recolher a informação, a fim de garantir a qualidade do estudo. Resultados: As entrevistas duraram aproximadamente 40 minutos. Foram obtidas nove unidades de significado, que foram divididas em dois grupos: ontico e ontológico. As unidades de significado ôntico incluíam: ignorância do climatério como fase da vida, angústia no climatério e cuidados médicos durante o climatério. O outro grupo compreende as unidades de significado ontológico: desejo sexual na escuridão, ausência de parceiro, o mundo familiar e o climatério, transcendência no climatério, sofrimento no climatério. Conclusão: As mulheres climatéricas são influenciadas pelo ambiente sócio-cultural, padrões repetitivos e fraco conhecimento do assunto
    corecore