40 research outputs found

    Conserved microRNA editing in mammalian evolution, development and disease.

    Get PDF
    BACKGROUND: Mammalian microRNAs (miRNAs) are sometimes subject to adenosine-to-inosine RNA editing, which can lead to dramatic changes in miRNA target specificity or expression levels. However, although a few miRNAs are known to be edited at identical positions in human and mouse, the evolution of miRNA editing has not been investigated in detail. In this study, we identify conserved miRNA editing events in a range of mammalian and non-mammalian species. RESULTS: We demonstrate deep conservation of several site-specific miRNA editing events, including two that date back to the common ancestor of mammals and bony fishes some 450 million years ago. We also find evidence of a recent expansion of an edited miRNA family in placental mammals and show that editing of these miRNAs is associated with changes in target mRNA expression during primate development and aging. While global patterns of miRNA editing tend to be conserved across species, we observe substantial variation in editing frequencies depending on tissue, age and disease state: editing is more frequent in neural tissues compared to heart, kidney and testis; in older compared to younger individuals; and in samples from healthy tissues compared to tumors, which together suggests that miRNA editing might be associated with a reduced rate of cell proliferation. CONCLUSIONS: Our results show that site-specific miRNA editing is an evolutionarily conserved mechanism, which increases the functional diversity of mammalian miRNA transcriptomes. Furthermore, we find that although miRNA editing is rare compared to editing of long RNAs, miRNAs are greatly overrepresented among conserved editing targets

    Nkx2.1 regulates the generation of telencephalic astrocytes during embryonic development.

    Get PDF
    The homeodomain transcription factor Nkx2.1 (NK2 homeobox 1) controls cell differentiation of telencephalic GABAergic interneurons and oligodendrocytes. Here we show that Nkx2.1 also regulates astrogliogenesis of the telencephalon from embryonic day (E) 14.5 to E16.5. Moreover we identify the different mechanisms by which Nkx2.1 controls the telencephalic astrogliogenesis. In Nkx2.1 knockout (Nkx2.1 <sup>-/-</sup> ) mice a drastic loss of astrocytes is observed that is not related to cell death. Further, in vivo analysis using BrdU incorporation reveals that Nkx2.1 affects the proliferation of the ventral neural stem cells that generate early astrocytes. Also, in vitro neurosphere assays showed reduced generation of astroglia upon loss of Nkx2.1, which could be due to decreased precursor proliferation and possibly defects in glial specification/differentiation. Chromatin immunoprecipitation analysis and in vitro co-transfection studies with an Nkx2.1-expressing plasmid indicate that Nkx2.1 binds to the promoter of glial fibrillary acidic protein (GFAP), primarily expressed in astrocytes, to regulate its expression. Hence, Nkx2.1 controls astroglial production spatiotemporally in embryos by regulating proliferation of the contributing Nkx2.1-positive precursors

    Nkx2.1-derived astrocytes and neurons together with Slit2 are indispensable for anterior commissure formation.

    Get PDF
    Guidepost cells present at and surrounding the midline provide guidance cues that orient the growing axons through commissures. Here we show that the transcription factor Nkx2.1 known to control the specification of GABAergic interneurons also regulates the differentiation of astroglia and polydendrocytes within the mouse anterior commissure (AC). Nkx2.1-positive glia were found to originate from three germinal regions of the ventral telencephalon. Nkx2.1-derived glia were observed in and around the AC region by E14.5. Thereafter, a selective cell ablation strategy showed a synergistic role of Nkx2.1-derived cells, both GABAergic interneurons and astroglia, towards the proper formation of the AC. Finally, our results reveal that the Nkx2.1-regulated cells mediate AC axon guidance through the expression of the repellent cue, Slit2. These results bring forth interesting insights about the spatial and temporal origin of midline telencephalic glia, and highlight the importance of neurons and astroglia towards the formation of midline commissures

    The Ciliogenic Transcription Factor RFX3 Regulates Early Midline Distribution of Guidepost Neurons Required for Corpus Callosum Development

    Get PDF
    The corpus callosum (CC) is the major commissure that bridges the cerebral hemispheres. Agenesis of the CC is associated with human ciliopathies, but the origin of this default is unclear. Regulatory Factor X3 (RFX3) is a transcription factor involved in the control of ciliogenesis, and Rfx3–deficient mice show several hallmarks of ciliopathies including left–right asymmetry defects and hydrocephalus. Here we show that Rfx3–deficient mice suffer from CC agenesis associated with a marked disorganisation of guidepost neurons required for axon pathfinding across the midline. Using transplantation assays, we demonstrate that abnormalities of the mutant midline region are primarily responsible for the CC malformation. Conditional genetic inactivation shows that RFX3 is not required in guidepost cells for proper CC formation, but is required before E12.5 for proper patterning of the cortical septal boundary and hence accurate distribution of guidepost neurons at later stages. We observe focused but consistent ectopic expression of Fibroblast growth factor 8 (Fgf8) at the rostro commissural plate associated with a reduced ratio of GLIoma-associated oncogene family zinc finger 3 (GLI3) repressor to activator forms. We demonstrate on brain explant cultures that ectopic FGF8 reproduces the guidepost neuronal defects observed in Rfx3 mutants. This study unravels a crucial role of RFX3 during early brain development by indirectly regulating GLI3 activity, which leads to FGF8 upregulation and ultimately to disturbed distribution of guidepost neurons required for CC morphogenesis. Hence, the RFX3 mutant mouse model brings novel understandings of the mechanisms that underlie CC agenesis in ciliopathies

    SOURCE, FATE AND FUNCTION OF EARLY GLIAL CELLS EXPRESSING NKX2.1 IN MOUSE EMBRYONIC BRAINS

    Get PDF
    The brain tissue is made of neuronal and glial cells generated in the germinal layer bordering the ventricles. These cells divide, differentiate and migrate following specific pathways. The specification of GABAergic interneurons and glutamatergic neurons has been broadly studied but little is known about the origin, the fate and the function of early glial cells in the embryonic telencephalon. It has been commonly accepted since long that the glial cells and more particularly the astrocytes were generated after neurogenesis from the dorsal telencephalon. However, our work shows that, unlike what was previously thought, numerous glial cells (astroglia and polydendrocytes) are generated during neurogenesis in the early embryonic stages from E14.5 to E16.5, and originate from the ventral Nkx2.1-expressing precursors instead. NK2 homeobox 1 (Nkx2.1) is a member of the NK2 family of homeodomaincontaining transcription factors. The specification of the MGE precursors requires the expression of the Nkx2.1 homeobox gene. Moreover, Nkx2.1 is previously known to regulate the specification of GABAergic interneurons and early oligodendrocytes in the ventral telencephalon. Here, in my thesis work, I have discovered that, in addition, Nkx2.1 also regulates astroglia and polydendrocytes differentiation. The use of Nkx2.1 antibody and Nkx2.1 riboprobe have revealed the presence of numerous Nkx2.1-positive cells that express astroglial markers (like GLAST and GFAP) in the entire embryonic brain. Thus, to selectively fate map MGE-derived GABAergic interneurons and glia, we crossed Nkx2.1-Cre mice, Glast-Cre ERT+/- inducible mice and NG2-Cre mice with the Cre reporter Rosa26-lox-STOP-lox-YFP (Rosa26-YFP) mice. The precise origin of Nkx2.1-positive astroglia has been directly ascertained by combining glial immunostaining and focal electroporation of the pCAG-GS-EGFP plasmids into the subpallial domains of organotypic slices, as well as, by using in vitro neurosphere experiments and in utero electroporation of the pCAG-GS-tomato plasmid into the ventral pallium of E14.5 Nkx2.1-Cre+/Rosa-YFP+/- embryos. We have, thus, confirmed that the three germinal regions of the ventral telencephalon i.e. the MGE, the AEP/POA and the triangular septal nucleus are able to generate early astroglial cells. Moreover, immunohistochemistry for several astroglial cells and polydendrocyte markers, both in the Nkx2.1-/- and control embryos and in the neurospheres, has revealed a severe loss of both glial cell types in the Nkx2.1 mutants. We found that the loss of glia corresponded to a decrease of Nkx2.1-derived precursor division capacity and glial differentiation. There was a drastic decrease of BrdU+ dividing cells labeled for Nkx2.1 in the MGE*, the POA* and the septal nucleus* of Nkx2.1 mutants. In addition, we noticed that while some remaining Nkx2.1+ precursors still succeeded to give rise to post-mitotic neurons in vitro and in vivo in the Nkx2.1-/-, they completely lost the capacity to differentiate in astrocytes. Altogether, these observations indicate for the first time that the transcription factor Nkx2.1 regulates the proliferation and differentiation of precursors in three subpallial domains that generate early embryonic astroglia and polydendrocytes. Furthermore, in order to investigate the potential function of these early Nkx2.1- derived glia, we have performed multiple immunohistochemical stainings on Nkx2.1-/- and wild-type animals, and Nkx2.1-Cre mice that were crossed to Rosa-DTA+/- mice in which the highly toxic diphtheria toxin aided to selectively deplete a majority of the Nkx2.1-derived cells. Interestingly, in these two mutants, we observed a drastic and significant loss of GFAP+, GLAST+, NG2+ and S100ß+ astroglial cells at the telencephalic midline and in the medial cortical areas. This cells loss could be directly correlated with severe axonal guidance defects observed in the corpus callosum (CC), the hippocampal commissure (HIC), the fornix (F) and the anterior commissure (AC). Axonal guidance is a key step allowing neurons to form specific connections and to become organized in a functional network. The contribution of guidepost cells inside the CC and the AC in mediating the growth of commissural axons have until now been attributed to specialized midline guidepost astroglia. Previous published results in our group have unravelled that, during embryonic development, the CC is populated in addition to astroglia by numerous glutamatergic and GABAergic guidepost neurons that are essential for the correct midline crossing of callosal axons. Therefore, the relative contribution of individual neuronal or glial populations towards the guidance of commissural axons remains largely to be investigated to understand guidance mechanisms further. Thus, we crossed Nkx2.1-Cre mice with NSE-DTA+/- mice that express the diphtheria toxin only in neurons and allowed us to selectively deplete Nkx2.1-derived GABAergic neurons. Interestingly, in the Nkx2.1-/- mice, the CC midline was totally disorganized and the callosal axons partly lost their orientation, whereas in the Nkx2.1Cre+/Rosa-DTA+/- and the Nkx2.1Cre+/NSE-DTA+/- mice, the axonal organization of the CC was not affected. In the three types of mice, hippocampal axons of the fornix were not properly fasciculated and formed disoriented bundles through the septum. Additionally, the AC formation was completely absent in Nkx2.1-/- mice and the AC was divided into two/three separate paths in the Nkx2.1Cre+/Rosa-DTA+/- mice that project in wrong territories. On the other hand, the AC didn't form or was reduced to a relatively narrower tract in the Nkx2.1Cre+/NSE-DTA+/- mice as compared to wild-type AC. These results clearly indicate that midline Nkx2.1-derived cells play a major role in commissural axons pathfinding and that both Nkx2.1-derived guidepost neurons and glia are necessary elements for the correct development of these commissures. Furthermore, during our investigations on Nkx2.1-/- and Nkx2.1Cre+/Rosa-DTA+/- mice, we noticed similar and severe defects in the erythrocytes distribution and the blood vessels network morphology in the embryonic brain of both mutants. As the Cre-mediated recombination was never observed to occur in the blood vessels of Nkx2.1-Cre mice, we inferred that the vessels defects observed were due to the loss of Nkx2.1-derived cells and not to the cells autonomous effects of Nkx2.1 in regulating endothelial cell precursors. Thereafter, the respective contribution of individual Nkx2.1-regulated neuronal or glial populations in the blood vessels network building were studied with the use of transgenic mice strains. Indeed, the use of Nkx2.1Cre+/NSE-DTA+/- mice indicated that the Nkx2.1-derived neurons were not implicated in this process. Finally, to discriminate between the two Nkx2.1-derived glial cell populations, the GLAST+ astroglia and the NG2+ polydendrocytes, an NG2-Cre mouse strain crossed to the Rosa-DTA+/- mice was used. In that mutant, the blood vessel network and the erythrocytes distribution were similarly affected as observed in Nkx2.1Cre+/Rosa-DTA+/- animals. Therefore, this result indicates that most probably, the NG2+ polydendrocytes are involved in helping to build the vessels network in the brain. Taken altogether, these observations show that during brain development, Nkx2.1- derived embryonic glial cells act as guidepost cells on the guidance of axons as well as forming vessels. Both Nkx2.1-regulated guidepost GABAergic neurons and glia collaborate to guide growing commissural axons, while polydendrocytes are implicated in regulating brain angiogenesis. - Le tissu cĂ©rĂ©bral est composĂ© de cellules neuronales et gliales gĂ©nĂ©rĂ©es dans les couches germinales qui bordent les ventricules. Ces cellules se divisent, se diffĂ©rencient et migrent selon des voies particuliĂšres. La spĂ©cification des interneurones GABAergiques et des neurones glutamatergiques a Ă©tĂ© largement Ă©tudiĂ©e, par contre, l'origine, le destin et la fonction des cellules gliales prĂ©coces du tĂ©lencĂ©phale embryonnaire restent peu Ă©lucidĂ©es. Depuis longtemps, il Ă©tait communĂ©ment acceptĂ© que les cellules gliales, et plus particuliĂšrement les astrocytes, sont gĂ©nĂ©rĂ©s aprĂšs la neurogĂ©nĂšse Ă  partir du tĂ©lencĂ©phale dorsal. Toutefois, notre travail montre que de nombreuses cellules gliales sont gĂ©nĂ©rĂ©es Ă  partir de prĂ©curseurs ventraux qui expriment le gĂšne Nkx2.1, entre E14.5 et E16.5, c'est-Ă  dire,Ă  des stades embryonnaires trĂšs prĂ©coces. Le gĂšne NK2 homĂ©obox 1 (Nkx2.1) appartient Ă  une famille de facteurs de transcription appelĂ©e NK2. Il s'agit de protĂ©ines qui contiennent un homĂ©o-domaine. La spĂ©cification des prĂ©curseurs de la MGE requiert l'expression du gĂšne homĂ©obox Nkx2.1. De plus, la fonction du gĂšne Nkx2.1 dans la rĂ©gulation de la spĂ©cification des interneurones GABAergiques et des oligodendrocytes dans le tĂ©lencĂ©phale ventral Ă©tait dĂ©jĂ  connue. Au cours de mon travail de thĂšse, j'ai Ă©galement mis en Ă©vidence que, Nkx2.1 rĂ©gule aussi les Ă©tapes de prolifĂ©ration et de diffĂ©renciation de divers sous-types de cellules gliales soit de type astrocytes ou bien polydendrocytes. L'utilisation d'un anticorps contre la protĂ©ine Nkx2.1 ainsi qu'une sonde Ă  ribonuclĂ©otides contre l'ARN messager du gĂšne Nkx2.1 ont rĂ©vĂ©lĂ© la prĂ©sence de nombreuses cellules positives pour Nkx2.1 qui exprimaient des marqueurs astrocytaires (comme GLAST et GFAP) dans le tĂ©lencĂ©phale embryonnaire. Afin de dĂ©terminer de maniĂšre sĂ©lective le sort des interneurones GABAergiques, des polydendrocytes et des astrocytes dĂ©rivĂ©s de la MGE, nous avons croisĂ© soit des souris Nkx2.1-Cre, des souris Glast-Cre ERT+/- inductibles ou bien des souris NG2-Cre avec des souris Rosa26-lox-STOP-lox-YFP (Rosa26-YFP) Cre rapportrices. L'origine prĂ©cise des astroglies positives pour Nkx2.1 a Ă©tĂ© directement Ă©tablie en combinant une coloration immunologique pour les glies et une Ă©lectroporation focale d'un plasmide pCAG-GS-EGFP dans les domaines subpalliaux de tranches organotypiques, puis Ă©galement, par des cultures de neurosphĂšres in vitro et des expĂ©riences d'Ă©lectroporation in utero d'un plasmide pCAG-GS-tomato dans le pallium ventral d'embryons Nkx2.1-Cre+/Rosa- YFP+/- au stade E14.5. Nous avons donc confirmĂ© que les trois rĂ©gions germinales du tĂ©lencĂ©phale ventral, c'est-Ă -dire, la MGE, l'AEP/POA et le noyau triangulaire septal sont capables de gĂ©nĂ©rer des cellules astrogliales. D'autre part, l'immunohistochimie pour plusieurs marqueurs d'astrocytes ou de polydendrocytes, dans les embryons Nkx2.1-/- et contrĂŽles ainsi que dans les neurosphĂšres, a rĂ©vĂ©lĂ© une sĂ©vĂšre perte de ces deux types gliaux chez les mutants. Nous avons trouvĂ© que la perte de glies correspondait Ă  une diminution de la capacitĂ© de division des prĂ©curseurs dĂ©rivĂ©s de Nkx2.1, ainsi que l'incapacitĂ© de ces prĂ©curseurs de se diffĂ©rencier en cellules gliales. Nous avons en effet observĂ© une diminution importante des cellules BrdU+ en division exprimant Nkx2.1dans la MGE*, la POA* et le noyau septal* des mutants pour Nkx2.1. D'autre part, nous avons pu mettre en Ă©vidence aussi bien in vitro, qu'in vivo, que certains prĂ©curseurs Nkx2.1+ chez le mutant gardent la capacitĂ© Ă  se diffĂ©rencier en neurones tandis qu'ils perdent celle de se diffĂ©rencier en cellules gliales. Prises dans leur ensemble, ces observations indiquent pour la premiĂšre fois que le facteur de transcription Nkx2.1 rĂ©gule les Ă©tapes de prolifĂ©ration et de diffĂ©rentiation des prĂ©curseurs des trois domaines subpalliaux qui gĂ©nĂšrent les astroglies et polydendrocytes embryonnaires prĂ©coces. Par la suite, dans le but de comprendre la fonction potentielle de ces glies prĂ©coces, nous avons procĂ©dĂ© Ă  de multiples colorations immunohistochimiques sur des animaux Nkx2.1-/- et sauvages, ainsi que sur des souris Nkx2.1-Cre croisĂ©es Ă  des souris Rosa-DTA+/- dans lesquelles la toxine diphthĂ©rique hautement toxique a permis de supprimer sĂ©lectivement la majoritĂ© des cellules dĂ©rivĂ©es de Nkx2.1. De maniĂšre intĂ©ressante, nous avons observĂ© dans ces deux mutants, une perte drastique et significative de cellules astrogliales GFAP+, GLAST+ et polydendrocytaires NG2+ et S100ß+ dans le tĂ©lencĂ©phale, Ă  la midline et dans les aires corticales mĂ©dianes. Ces pertes ont pu ĂȘtre directement corrĂ©lĂ©es avec des dĂ©fauts de guidage axonal observĂ©s dans le corps calleux (CC), la commissure hippocampique (HIC), le fornix (F) et la commissure antĂ©rieure (AC). Le guidage axonal est une Ă©tape clĂ© permettant aux neurones de former des connections spĂ©cifiques et de s'organiser dans un rĂ©seau fonctionnel. La contribution des cellules « guidepost » dans le CC et dans la AC comme mĂ©diateurs de la croissance des axones commissuraux Ă  jusqu'Ă  aujourd'hui Ă©tĂ© attribuĂ©e spĂ©cifiquement Ă  des astroglies « guidepost » de la midline. Des rĂ©sultats publiĂ©s prĂ©cĂ©demment dans notre groupe, ont permis de montrer que, pendant le dĂ©veloppement embryonnaire, le CC est peuplĂ© en plus de la glie par de nombreux neurones « guidepost » glutamatergiques et GABAergiques qui sont essentiels pour le croisement correct des axones callosaux Ă  la midline. Ainsi, la contribution relative des populations individuelles neuronales ou gliales pour le guidage des axones commissuraux demande Ă  ĂȘtre approfondie afin de mieux comprendre les mĂ©canismes de guidage. A ces fins, nous avons croisĂ© des souris Nkx2.1-Cre avec des souris NSE-DTA+/- qui expriment la toxine diphthĂ©rique uniquement dans les neurones et ainsi, nous avons pu sĂ©lectivement supprimer les neurones dĂ©rivĂ©s de domaines Nkx2.1+. Dans les souris Nkx2.1-/-,nous avons dĂ©couvert que le CC Ă©tait dĂ©sorganisĂ© avec des axones callosaux perdant partiellement leur orientation, alors que dans les souris Nkx2.1Cre+/Rosa-DTA+/- et Nkx2.1Cre+/NSE-DTA+/-, l'organisation axonale n'Ă©tait pas affectĂ©e. De plus, les faisceaux hippocampiques du fornix Ă©taient dĂ©fasciculĂ©s dans les trois types de mutants. Par ailleurs, la formation de la commissure antĂ©rieure (AC) Ă©tait complĂštement absente dans les souris Nkx2.1-/- d'une part, et d'autre part, celle-ci Ă©tait divisĂ©e en deux Ă  trois voies sĂ©parĂ©es dans les souris Nkx2.1Cre+/Rosa-DTA+/-. Finalement, la AC Ă©tait soit absente, soit rĂ©duite de maniĂšre ne former plus qu'un faisceau relativement plus Ă©troit dans les souris Nkx2.1Cre+/NSE-DTA+/- en comparaison avec la AC sauvage. Ces derniers rĂ©sultats indiquent clairement que les cellules dĂ©rivĂ©es de Nkx2.1 Ă  la midline, jouent un rĂŽle majeur dans le guidage des axones commissuraux et que, autant les neurones, que les astrocytes « guidepost » dĂ©rivĂ©s de Nkx2.1, sont des Ă©lĂ©ments nĂ©cessaires au dĂ©veloppement correct de ces commissures. En outre, lors de nos investigations sur les souris Nkx2.1-/- et Nkx2.1Cre+/Rosa-DTA+/-, nous avons remarquĂ©s des dĂ©fauts sĂ©vĂšres et similaires dans la distribution des erythrocytes et dans la morphologie du rĂ©seau de vaisseaux sanguins dans le cerveau embryonnaire des deux mutants prĂ©citĂ©s. Puisque nous n'avons jamais observĂ© de recombinaison de la Cre recombinase dans les vaisseaux sanguins des souris Nkx2.1Cre, nous en avons dĂ©duit que les dĂ©fauts de vaisseaux observĂ©s Ă©taient dus Ă  la perte de cellules dĂ©rivĂ©es de Nkx2.1. Il existerait donc en plus de la fonction cellulaire autonome de Nkx2.1 reconnue pour rĂ©gulĂ©e directement la spĂ©cification des cellules endothĂ©liales, une fonction indirecte de Nkx2.1. Afin de dĂ©terminer la contribution respective des populations individuelles neuronales ou gliales rĂ©gulĂ©es par Nkx2.1 dans la construction du rĂ©seau de vaisseaux sanguins, nous avons utilisĂ© diverses lignĂ©es de souris transgĂ©niques. L'utilisation de souris Nkx2.1Cre+/NSE-DTA+/- a indiquĂ© que les neurones dĂ©rivĂ©s de Nkx2.1 n'Ă©taient pas impliquĂ©s dans ce processus. Finalement, afin de discriminer entre les deux populations de cellules gliales dĂ©rivĂ©es de Nkx2.1, les astroglies et les polydendrocytes, nous avons croisĂ© une lignĂ©e de souris NG2-Cre avec des souris Rosa-DTA+/-. Dans ce dernier mutant, le rĂ©seau de vaisseaux sanguins du cortex ainsi que la distribution des erythrocytes Ă©taient affectĂ©s de la mĂȘme maniĂšre que dans le cortex des souris Nkx2.1Cre+/Rosa-DTA+/-. Par consĂ©quent, ce rĂ©sultat indique que trĂšs probablement, les polydendrocytes NG2+ sont impliquĂ©s dans la mise en place du rĂ©seau de vaisseaux dans le cerveau. Prises dans leur ensemble, ces observations montrent que durant le dĂ©veloppement embryonnaire du cerveau, des sous-populations de glies rĂ©gulĂ©es par Nkx2.1 jouent un rĂŽle de cellules « guidepost » dans le guidage des axones, ainsi que des vaisseaux. Les polydendrocytes sont impliquĂ©es dans la rĂ©gulation de l'angiogenĂšse tandis que, autant les neurones GABAergiques que les astrocytes collaborent dans le guidage des axones commissuraux en croissance

    Rapid solidification of Al-Cu droplets of near eutectic composition

    No full text
    Near eutectic Al-Cu droplets were rapidly solidified by Impulse Atomization. A wide range of microstructural scales was obtained at different cooling rates and undercoolings. The micrographs of the investigated samples revealed two distinct zones of different structural morphologies: An undulated eutectic morphology developed during recalescence following the single grain nucleation and a regular lamellar eutectic morphology resulting from the solidification of the remaining liquid post recalescence. The volume fraction of each zone was measured as a function of the droplet diameter, and the nucleation undercooling was deduced using the hypercooling limit equation. Scanning Electronic Microscopy imaging and microhardness measurements were used to evaluate the microstructural scale, and mechanical properties

    U-Pb and Ar-Ar geochronological data from the Pelagonian basement in Evia (Greece): geodynamic implications for the evolution of Paleotethys

    No full text
    High precision U-Pb zircon and Ar-40/Ar-39 mica geochronological data on metagranodiorites, metagranites and mica schists from north and central Evia island (Greece) are presented in this study. U-Pb zircon ages range from 308 to 1912 Ma, and indicate a prolonged magmatic activity in Late Carboniferous. Proterozoic ages represent inherited cores within younger crystals. Muscovite Ar-40/Ar-39 plateau ages of 288 to 297 Ma are interpreted as cooling ages of the magmatic bodies and metamorphic host rocks in upper greenschist to epidote-amphibolite metamorphic conditions. The multistage magmatism had a duration between 308 and 319 hla but some older intrusions, as well as metamorphic events, cannot be excluded. Geochemical analyses and zircon typology indicate calc-alkaline affinities for the granites of central Evia and alkaline to calc-alkaline characteristics for the metagranodiorites from the northern part of the island. The new data point towards the SE continuation, in Evia and the Cyclades, of a Variscan continental crust already recognised in northern Greece (Pelagonian basement). The Late Carboniferous magmatism is viewed as a result of northward subduction of the Paleotethys under the Eurasian margin
    corecore