68 research outputs found

    Checkpoint kinase inhibitor AZD7762 strongly sensitises urothelial carcinoma cells to gemcitabine

    Get PDF
    Background: More effective chemotherapies are urgently needed for bladder cancer, a major cause of morbidity and mortality worldwide. We therefore explored the efficacy of the combination of gemcitabine and AZD7762, a checkpoint kinase 1/2 (CHK1/2) inhibitor, for bladder cancer. Methods: Viability, clonogenicity, cell cycle distribution and apoptosis were assessed in urothelial cancer cell lines and various non-malignant urothelial cells treated with gemcitabine and AZD7762. DNA damage was assessed by ?H2A.X and 53-BP1 staining and checkpoint activation was followed by Western blotting. Pharmacological inhibition of CHK1 and CHK2 was compared to downregulation of either CHK1 or CHK2 using siRNAs. Results: Combined use of gemcitabine and AZD7762 synergistically reduced urothelial carcinoma cell viability and colony formation relative to either single treatment. Non-malignant urothelial cells were substantially less sensitive to this drug combination. Gemcitabine plus AZD7762 inhibited cell cycle progression causing cell accumulation in S-phase. Moreover, the combination induced pronounced levels of apoptosis as indicated by an increase in the fraction of sub-G1 cells, in the levels of cleaved PARP, and in caspase 3/7 activity. Mechanistic investigations showed that AZD7762 treatment inhibited the repair of gemcitabine-induced double strand breaks by interference with CHK1, since siRNA-mediated depletion of CHK1 but not of CHK2 mimicked the effects of AZD7762. Conclusions: AZD7762 enhanced sensitivity of urothelial carcinoma cells to gemcitabine by inhibiting DNA repair and disturbing checkpoints. Combining gemcitabine with CHK1 inhibition holds promise for urothelial cancer therapy

    Henipavirus RNA in African Bats

    Get PDF
    BACKGROUND: Henipaviruses (Hendra and Nipah virus) are highly pathogenic members of the family Paramyxoviridae. Fruit-eating bats of the Pteropus genus have been suggested as their natural reservoir. Human Henipavirus infections have been reported in a region extending from Australia via Malaysia into Bangladesh, compatible with the geographic range of Pteropus. These bats do not occur in continental Africa, but a whole range of other fruit bats is encountered. One of the most abundant is Eidolon helvum, the African Straw-coloured fruit bat. METHODOLOGY/PRINCIPAL FINDINGS: Feces from E. helvum roosting in an urban setting in Kumasi/Ghana were tested for Henipavirus RNA. Sequences of three novel viruses in phylogenetic relationship to known Henipaviruses were detected. Virus RNA concentrations in feces were low. CONCLUSIONS/SIGNIFICANCE: The finding of novel putative Henipaviruses outside Australia and Asia contributes a significant extension of the region of potential endemicity of one of the most pathogenic virus genera known in humans

    Geographical trends in the yolk carotenoid composition of the pied flycatcher (Ficedula hypoleuca)

    Get PDF
    Carotenoids in the egg yolks of birds are considered to be important antioxidants and immune stimulants during the rapid growth of embryos. Yolk carotenoid composition is strongly affected by the carotenoid composition of the female’s diet at the time of egg formation. Spatial and temporal differences in carotenoid availability may thus be reflected in yolk concentrations. To assess whether yolk carotenoid concentrations or carotenoid profiles show any large-scale geographical trends or differences among habitats, we collected yolk samples from 16 European populations of the pied flycatcher, Ficedula hypoleuca. We found that the concentrations and proportions of lutein and some other xanthophylls in the egg yolks decreased from Central Europe northwards. The most southern population (which is also the one found at the highest altitude) also showed relatively low carotenoid levels. Concentrations of β-carotene and zeaxanthin did not show any obvious geographical gradients. Egg yolks also contained proportionally more lutein and other xanthophylls in deciduous than in mixed or coniferous habitats. We suggest that latitudinal gradients in lutein and xanthophylls reflect the lower availability of lutein-rich food items in the northern F. hypoleuca populations and in montane southern populations, which start egg-laying earlier relative to tree phenology than the Central European populations. Similarly, among-habitat variation is likely to reflect the better availability of lutein-rich food in deciduous forests. Our study is the first to indicate that the concentration and profile of yolk carotenoids may show large-scale spatial variation among populations in different parts of the species’ geographical range. Further studies are needed to test the fitness effects of this geographical variation

    Acquired resistance to oxaliplatin is not directly associated with increased resistance to DNA damage in SK-N-ASrOXALI4000, a newly established oxaliplatin-resistant sub-line of the neuroblastoma cell line SK-N-AS

    Get PDF
    The formation of acquired drug resistance is a major reason for the failure of anti-cancer therapies after initial response. Here, we introduce a novel model of acquired oxaliplatin resistance, a sub-line of the non-MYCN-amplified neuroblastoma cell line SK-N-AS that was adapted to growth in the presence of 4000 ng/mL oxaliplatin (SK-N-ASrOXALI4000). SK-N-ASrOXALI4000 cells displayed enhanced chromosomal aberrations compared to SK-N-AS, as indicated by 24-chromosome fluorescence in situ hybridisation. Moreover, SK-N-ASrOXALI4000 cells were resistant not only to oxaliplatin but also to the two other commonly used anti-cancer platinum agents cisplatin and carboplatin. SK-N-ASrOXALI4000 cells exhibited a stable resistance phenotype that was not affected by culturing the cells for 10 weeks in the absence of oxaliplatin. Interestingly, SK-N-ASrOXALI4000 cells showed no cross resistance to gemcitabine and increased sensitivity to doxorubicin and UVC radiation, alternative treatments that like platinum drugs target DNA integrity. Notably, UVC-induced DNA damage is thought to be predominantly repaired by nucleotide excision repair and nucleotide excision repair has been described as the main oxaliplatin-induced DNA damage repair system. SK-N-ASrOXALI4000 cells were also more sensitive to lysis by influenza A virus, a candidate for oncolytic therapy, than SK-N-AS cells. In conclusion, we introduce a novel oxaliplatin resistance model. The oxaliplatin resistance mechanisms in SK-N-ASrOXALI4000 cells appear to be complex and not to directly depend on enhanced DNA repair capacity. Models of oxaliplatin resistance are of particular relevance since research on platinum drugs has so far predominantly focused on cisplatin and carboplatin

    Calcium orthophosphate-based biocomposites and hybrid biomaterials

    Full text link

    Standard of hygiene and immune adaptation in newborn infants

    No full text
    VK: symmysThe prevalence of immune-mediated diseases, such as allergies and type 1 diabetes, is on the rise in the developed world. In order to explore differences in the gene expression patterns induced in utero in infants born in contrasting standards of living and hygiene, we collected umbilical cord blood RNA samples from infants born in Finland (modern society), Estonia (rapidly developing society) and the Republic of Karelia, Russia (poor economic conditions). The whole blood transcriptome of Finnish and Estonian neonates differed from their Karelian counterparts, suggesting exposure to toll-like receptor (TLR) ligands and a more matured immune response in infants born in Karelia. These results further support the concept of a conspicuous plasticity in the developing immune system: the environmental factors that play a role in the susceptibility/protection towards immune-mediated diseases begin to shape the neonatal immunity already in utero and direct the maturation in accordance with the surrounding microbial milieu.Peer reviewe

    Italian guidelines for molecular analysis in myotonic dystrophies

    No full text
    Myotonic dystrophies, the most common form of adult muscular dystrophy, comprise at least two forms, clinically and genetically heterogeneous. Myotonic dystrophy type 1 and type 2 are both caused by unstable repetitions in untranslated gene regions: a [CTG]n expansion in the 3’ region of the DMPK gene on chromosome 19q13 (DM1) and [CCTG]n tetranucleotide repeat located in the first intron of the ZNF9 gene on chromosome 3q21 (DM2). DM clinical features are caused by a gain of functions RNA mechanism in which the CUG and CCUG repeats alter nuclear functions, including alternative splicing of shared genes. Southern blot and/or polymerase chain reaction PCR-based approaches allow the detection of DM mutations in almost 100% of cases, however, the expansion size and the elevated grade of somatic instability make molecular testing for DM a diagnostic challenge. The increased use of DNA testing for DM generates many questions regarding the indications and interpretations of the test which require standardized methods, routinely available in molecular genetic laboratories. Here, we propose Guidelines for the molecular diagnosis of DM1 and DM2 approved by the Italian Ministry of Health in 2005 (Piano Nazionale Linee Guida, PNLG). Best practice for DM molecular analysis in diagnostic application, presymptomatic and prenatal testing, using direct and indirect approaches are described, with particular attention focused on ethical, legal and social issues. Overviews of materials used in the molecular diagnosis, as well as internet resources, are also included

    Italian guidelines for molecular analysis in myotonic dystrophies

    No full text
    Myotonic dystrophies, the most common form of adult muscular dystrophy, comprise at least two forms, clinically and genetically heterogeneous. Myotonic dystrophy type 1 and type 2 are both caused by unstable repetitions in untranslated gene regions: a [CTG]n expansion in the 3′ region of the DMPK gene on chromosome 19q13 (DM1) and [CCTG]n tetranucleotide repeat located in the first intron of the ZNF9 gene on chromosome 3q21 (DM2). DM clinical features are caused by a gain of functions RNA mechanism in which the CUG and CCUG repeats alter nuclear functions, including alternative splicing of shared genes. Southern blot and/or polymerase chain reaction PCR-based approaches allow the detection of DM mutations in almost 100% of cases, however, the expansion size and the elevated grade of somatic instability make molecular testing for DM a diagnostic challenge. The increased use of DNA testing for DM generates many questions regarding the indications and interpretations of the test which require standardized methods, routinely available in molecular genetic laboratories. Here, we propose Guidelines for the molecular diagnosis of DM1 and DM2 approved by the Italian Ministry of Health in 2005 (Piano Nazionale Linee Guida, PNLG). Best practice for DM molecular analysis in diagnostic application, presymptomatic and prenatal testing, using direct and indirect approaches are described, with particular attention focused on ethical, legal and social issues. Overviews of materials used in the molecular diagnosis, as well as internet resources, are also included
    corecore