2,363 research outputs found
Galaxy Formation by Galactic Magnetic Fields
Galaxies exhibit a sequence of various morphological types, i.e., the Hubble
sequence, and they are basically composed of spheroidal components (elliptical
galaxies and bulges in spiral galaxies) and disks. It is known that spheroidal
components are found only in relatively massive galaxies with M=10^{10-12}
M_sun, and all stellar populations in them are very old, but there is no clear
explanation for these facts. Here we present a speculative scenario for the
origin of the Hubble sequence, in which magnetic fields ubiquitously seen in
galaxies have played a crucial role. We first start from a strange
observational fact that magnetic field strengths observed in spiral galaxies
sharply concentrate at a few microgauss, for a wide range of galaxy luminosity
and types. We then argue that this fact and the observed correlation between
star formation activity and magnetic field strength in spiral galaxies suggest
that spheroidal galaxies have formed by starbursts induced by strong magnetic
fields. Then we show that this idea naturally leads to the formation of
spheroidal systems only in massive and high-redshift objects in hierarchically
clustering universe, giving a simple explanation for various observations.Comment: 7 pages including 2 figures. Accepted by ApJ Letter
Faraday Rotation Measure Synthesis
We extend the rotation measure work of Burn (1966) to the cases of limited
sampling of lambda squared space and non-constant emission spectra. We
introduce the rotation measure transfer function (RMTF), which is an excellent
predictor of n-pi ambiguity problems with the lambda squared coverage. Rotation
measure synthesis can be implemented very efficiently on modern computers.
Because the analysis is easily applied to wide fields, one can conduct very
fast RM surveys of weak spatially extended sources. Difficult situations, for
example multiple sources along the line of sight, are easily detected and
transparently handled. Under certain conditions, it is even possible to recover
the emission as a function of Faraday depth within a single cloud of ionized
gas. Rotation measure synthesis has already been successful in discovering
widespread, weak, polarized emission associated with the Perseus cluster (De
Bruyn and Brentjens, 2005). In simple, high signal to noise situations it is as
good as traditional linear fits to polarization angle versus lambda squared
plots. However, when the situation is more complex or very weak polarized
emission at high rotation measures is expected, it is the only viable option.Comment: 17 pages, 14 figures, accepted by A&A, added references, corrected
typo
Coherent acoustic vibration of metal nanoshells
Using time-resolved pump-probe spectroscopy we have performed the first
investigation of the vibrational modes of gold nanoshells. The fundamental
isotropic mode launched by a femtosecond pump pulse manifests itself in a
pronounced time-domain modulation of the differential transmission probed at
the frequency of nanoshell surface plasmon resonance. The modulation amplitude
is significantly stronger and the period is longer than in a gold nanoparticle
of the same overall size, in agreement with theoretical calculations. This
distinct acoustical signature of nanoshells provides a new and efficient method
for identifying these versatile nanostructures and for studying their
mechanical and structural properties.Comment: 5 pages, 3 figure
The energy spectrum observed by the AGASA experiment and the spatial distribution of the sources of ultra-high energy cosmic rays
Seven and a half years of continuous monitoring of giant air showers
triggered by ultra high-energy cosmic rays have been recently summarized by the
AGASA collaboration. The resulting energy spectrum indicates clearly that the
cosmic ray spectrum extends well beyond the Greisen-Zatsepin-Kuzmin (GZK)
cut-off at eV. Furthermore, despite the small number
statistics involved, some structure in the spectrum may be emerging. Using
numerical simulations, it is demonstrated in the present work that these
features are consistent with a spatial distribution of sources that follows the
distribution of luminous matter in the local Universe. Therefore, from this
point of view, there is no need for a second high-energy component of cosmic
rays dominating the spectrum beyond the GZK cut-off.Comment: 14 pages, 4 figures, Astrophys. J. Letters (submitted
A Magnetized Local Supercluster and the Origin of the Highest Energy Cosmic Rays
A sufficiently magnetized Local Supercluster can explain the spectrum and
angular distribution of ultra-high energy cosmic rays. We show that the
spectrum of extragalactic cosmic rays with energies below eV may
be due to the diffusive propagation in the Local Supercluster with fields of
Gauss. Above eV, cosmic rays propagate
in an almost rectilinear way which is evidenced by the change in shape of the
spectrum at the highest energies. The fit to the spectrum requires that at
least one source be located relatively nearby at Mpc away from the
Milky Way. We discuss the origin of magnetic fields in the Local Supercluster
and the observable predictions of this model.Comment: 11 pages, 2 figures, submitted to PR
Acid-Labile Traceless Click Linker for Protein Transduction
Intracellular delivery of active proteins presents an interesting approach in research and therapy. We created a protein transduction shuttle based on a new traceless click linker that combines the advantages of click reactions with implementation of reversible pH-sensitive bonds. The azidomethyl-methylmaleic anhydride (AzMMMan) linker was found compatible with different click chemistries, demonstrated in bioreversible protein modification with dyes, polyethylene glycol, or a transduction carrier. Linkages were stable at physiological pH but reversible at the mild acidic pH of endosomes or lysosomes. We show that pH-reversible attachment of a defined endosome-destabilizing three-arm oligo(ethane amino)amide carrier generates an effective shuttle for protein delivery. The cargo protein nlsEGFP, when coupled via the traceless AzMMMan linker, experiences efficient cellular uptake and endosomal escape into the cytosol, followed by import into the nucleus. In contrast, irreversible linkage to the same shuttle hampers nuclear delivery of nlsEGFP which after uptake remains trapped in the cytosol. Successful intracellular delivery of bioactive ß-galactosidase as a model enzyme was also demonstrated using the pH-controlled shuttle system
Particle Diffusion and Acceleration by Shock Wave in Magnetized Filamentary Turbulence
We expand the off-resonant scattering theory for particle diffusion in
magnetized current filaments that can be typically compared to astrophysical
jets, including active galactic nucleus jets. In a high plasma beta region
where the directional bulk flow is a free-energy source for establishing
turbulent magnetic fields via current filamentation instabilities, a novel
version of quasi-linear theory to describe the diffusion of test particles is
proposed. The theory relies on the proviso that the injected energetic
particles are not trapped in the small-scale structure of magnetic fields
wrapping around and permeating a filament but deflected by the filaments, to
open a new regime of the energy hierarchy mediated by a transition compared to
the particle injection. The diffusion coefficient derived from a quasi-linear
type equation is applied to estimating the timescale for the stochastic
acceleration of particles by the shock wave propagating through the jet. The
generic scalings of the achievable highest energy of an accelerated ion and
electron, as well as of the characteristic time for conceivable energy
restrictions, are systematically presented. We also discuss a feasible method
of verifying the theoretical predictions. The strong, anisotropic turbulence
reflecting cosmic filaments might be the key to the problem of the acceleration
mechanism of the highest energy cosmic rays exceeding 100 EeV (10^{20} eV),
detected in recent air shower experiments.Comment: 39 pages, 2 figures, accepted for publication in Ap
Conception et réalisation des capteurs hybrides photovoltaïque-thermiques sous vide ou avec lame d’air confinée
Cette étude fait l’analyse des performances thermiques et électriques de deux types de capteurs solaires hybrides photovoltaïque-thermiques à air intégrables en toitures des bâtiments. Pour ces capteurs hybrides, les cellules PV sont isolées soit avec une lame d’air confinée ou soit avec un gap vide. La modélisation des transferts de chaleur dans les systèmes est effectuée en 2D et en régime transitoire, suivant l’approche nodale. Le code numérique développé a été validé et a permis d’analyser les comportements thermiques ainsi que les efficacités thermique et électrique des capteurs. L’optimisation des paramètres fonctionnels est ensuite effectuée et présentée.Mots-clés: énergie solaire, cellules photovoltaïques, capteurs solaires hybrides (PV/T), transferts thermiques. Conception and realization of hybrid photovoltaic thermal collectors with empty gap or with enclosed air cavityThe present work reports thermal and electrical efficiencies for two solar hybrid photovoltaic-thermal air collectors integrated into the roof of the buildings. In these hybrid collectors, the PV cells are insulated with the enclosed air film or with the empty gap cavity. The unsteady and two-dimensional heat transfer equations are proposed and these equations are discretized using nodal method. The numerical model developed is validated. Then thermal and electrical efficiencies are analyzed for the collectors. The optimization of the characteristics parameters is studied in detail.Keywords: solar energy, photovoltaic cells, hybrid solar collector, heat transfer, nodal method
High-Mass X-ray Binaries and the Spiral Structure of the Host Galaxy
We investigate the manifestation of the spiral structure in the distribution
of high-mass X-ray binaries (HMXBs) over the host galaxy. We construct the
simple kinematic model. It shows that the HMXBs should be displaced relative to
the spiral structure observed in such traditional star formation rate
indicators as the Halpha and FIR emissions because of their finite lifetimes.
Using Chandra observations of M51, we have studied the distribution of X-ray
sources relative to the spiral arms of this galaxy observed in Halpha. Based on
K-band data and background source number counts, we have separated the
contributions from high-mass and low-mass X-ray binaries and active galactic
nuclei. In agreement with model predictions, the distribution of HMXBs is wider
than that of bright HII regions concentrated in the region of ongoing star
formation. However, the statistical significance of this result is low, as is
the significance of the concentration of the total population of X-ray sources
to the spiral arms. We also predict the distribution of HMXBs in our Galaxy in
Galactic longitude. The distribution depends on the mean HMXB age and can
differ significantly from the distributions of such young objects as
ultracompact HII regions.Comment: 18 pages, 6 figures; Astronomy Letters, Vol. 33, No. 5, 2007, pp.
299-30
Coarctation of the aorta: pre and postoperative evaluation with MRI and MR angiography; correlation with echocardiography and surgery
Aims: To compare MRI and MRA with Doppler-echocardiography (DE) in native and postoperative aortic coarctation, define the best MR protocol for its evaluation, compare MR with surgical findings in native coarctation. Materials and methods: 136 MR studies were performed in 121 patients divided in two groups: Group I, 55 preoperative; group II, 81 postoperative. In group I, all had DE and surgery was performed in 35 cases. In group II, DE was available for comparison in 71 cases. MR study comprised: spin-echo, cine, velocity-encoded cine (VEC) sequences and 3D contrast-enhanced MRA. Results: In group I, diagnosis of coarctation was made by DE in 33 cases and suspicion of coarctation and/or aortic arch hypoplasia in 18 cases. Aortic arch was not well demonstrated in 3 cases and DE missed one case. There was a close correlation between VEC MRI and Doppler gradient estimates across the coarctation, between MRI aortic arch diameters and surgery but a poor correlation in isthmic measurements. In group II, DE detected a normal isthmic region in 31 out of 35 cases. Postoperative anomalies (recoarctation, aortic arch hypoplasia, kinking, pseudoaneurysm) were not demonstrated with DE in 50% of cases. Conclusions: MRI is superior to DE for pre and post-treatment evaluation of aortic coarctation. An optimal MR protocol is proposed. Internal measurement of the narrowing does not correspond to the external aspect of the surgical narrowin
- …