13,514 research outputs found

    Global status of neutrino oscillation parameters after Neutrino-2012

    Get PDF
    Here we update the global fit of neutrino oscillations in arXiv:1103.0734 and arXiv:1108.1376 including the recent measurements of reactor antineutrino disappearance reported by the Double Chooz, Daya Bay and RENO experiments, together with latest MINOS and T2K appearance and disappearance results, as presented at the Neutrino-2012 conference. We find that the preferred global fit value of θ13\theta_{13} is quite large: sin2θ130.025\sin^2\theta_{13} \simeq 0.025 for normal and inverted neutrino mass ordering, with θ13=0\theta_{13} = 0 now excluded at more than 10σ\sigma. The impact of the new θ13\theta_{13} measurements over the other neutrino oscillation parameters is discussed as well as the role of the new long-baseline neutrino data and the atmospheric neutrino analysis in the determination of a non-maximal atmospheric angle θ23\theta_{23}.Comment: Note added, matches published version in Physical Review

    Neutrino oscillations refitted

    Get PDF
    Here we update our previous global fit of neutrino oscillations by including the recent results which have appeared since the Neutrino-2012 conference. These include the measurements of reactor anti-neutrino disappearance reported by Daya Bay and RENO, together with latest T2K and MINOS data including both disappearance and appearance channels. We also include the revised results from the third solar phase of Super-Kamiokande, SK-III, as well as new solar results from the fourth phase of Super-Kamiokande, SK-IV. We find that the preferred global determination of the atmospheric angle θ23\theta_{23} is consistent with maximal mixing. We also determine the impact of the new data upon all the other neutrino oscillation parameters with emphasis on the increasing sensitivity to the CP phase, thanks to the interplay between accelerator and reactor data. In the appendix we present the updated results obtained after the inclusion of new reactor data presented at the Neutrino 2014 conference. We discuss their impact on the global neutrino analysis.Comment: 13 pages, 5 figures, 2 tables. An appendix providing updated results after Neutrino-2014 Conference is added. Matches published version in Physical Review

    Non-Gaussian Geostatistical Modeling using (skew) t Processes

    Get PDF
    We propose a new model for regression and dependence analysis when addressing spatial data with possibly heavy tails and an asymmetric marginal distribution. We first propose a stationary process with tt marginals obtained through scale mixing of a Gaussian process with an inverse square root process with Gamma marginals. We then generalize this construction by considering a skew-Gaussian process, thus obtaining a process with skew-t marginal distributions. For the proposed (skew) tt process we study the second-order and geometrical properties and in the tt case, we provide analytic expressions for the bivariate distribution. In an extensive simulation study, we investigate the use of the weighted pairwise likelihood as a method of estimation for the tt process. Moreover we compare the performance of the optimal linear predictor of the tt process versus the optimal Gaussian predictor. Finally, the effectiveness of our methodology is illustrated by analyzing a georeferenced dataset on maximum temperatures in Australi

    Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw

    Get PDF
    Within low-scale seesaw mechanisms, such as the inverse and linear seesaw, one expects (i) potentially large lepton flavor violation (LFV) and (ii) sizeable non-standard neutrino interactions (NSI). We consider the interplay between the magnitude of non-unitarity effects in the lepton mixing matrix, and the constraints that follow from LFV searches in the laboratory. We find that NSI parameters can be sizeable, up to percent level in some cases, while LFV rates, such as that for \mu -> e \gamma, lie within current limits, including the recent one set by the MEG collaboration. As a result the upcoming long baseline neutrino experiments offer a window of opportunity for complementary LFV and weak universality tests.Comment: 14 pages, 14 composite figures and 1 table. v2: minor changes, references added. Accepted for publication in JHE

    A magnetic reconnection model for explaining the multi-wavelength emission of the microquasars Cyg X-1 and Cyg X-3

    Get PDF
    Recent studies have indicated that cosmic ray acceleration by a first-order Fermi process in magnetic reconnection current sheets can be efficient enough in the surrounds of compact sources. In this work, we discuss this acceleration mechanism operating in the core region of galactic black hole binaries (or microquasars) and show the conditions under which this can be more efficient than shock acceleration. In addition, we compare the corresponding acceleration rate with the relevant radiative loss rates obtaining the possible energy cut-off of the accelerated particles and also compute the expected spectral energy distribution (SED) for two sources of this class, namely Cygnus X-1 and Cygnus X-3, considering both leptonic and hadronic processes. The derived SEDs are comparable to the observed ones in the low and high energy ranges. Our results suggest that hadronic non-thermal emission due to photo-meson production may produce the very high energy gamma-rays in these microquasars.Comment: 17 pages and 7 figures. Accepted for publication in the Monthly Notices of the Royal Astronomical Society (MNRAS

    On the description of non-unitary neutrino mixing

    Get PDF
    Neutrino oscillations are well established and the relevant parameters determined with good precision, except for the CP phase, in terms of a unitary lepton mixing matrix. Seesaw extensions of the Standard Model predict unitarity deviations due to the admixture of heavy isosinglet neutrinos. We provide a complete description of the unitarity and universality deviations in the light neutrino sector. Neutrino oscillation experiments involving electron or muon neutrinos and anti-neutrinos are fully described in terms of just three new real parameters and a new CP phase, in addition to the ones describing oscillations with unitary mixing. Using this formalism we describe the implications of non-unitarity for neutrino oscillations and summarize the model-independent constraints on heavy neutrino couplings that arise from current experiments.Comment: 28 pages, 8 figures, typos corrected, modified bounds on non-unitarity parameters, new figs 3 and

    Status of neutrino oscillations 2018: first hint for normal mass ordering and improved CP sensitivity

    Full text link
    We present a new global fit of neutrino oscillation parameters within the simplest three-neutrino picture, including new data which appeared since our previous analysis~\cite{Forero:2014bxa}. In this update we include new long-baseline neutrino data involving the antineutrino channel in T2K, as well as new data in the neutrino channel, data from NOν\nuA, as well as new reactor data, such as the Daya Bay 1230 days electron antineutrino disappearance spectrum data and the 1500 live days prompt spectrum from RENO, as well as new Double Chooz data. We also include atmospheric neutrino data from the IceCube DeepCore and ANTARES neutrino telescopes and from Super-Kamiokande. Finally, we also update our solar oscillation analysis by including the 2055-day day/night spectrum from the fourth phase of the Super-Kamiokande experiment. With the new data we find a preference for the atmospheric angle in the upper octant for both neutrino mass orderings, with maximal mixing allowed at Δχ2=1.6(3.2)\Delta\chi^2 = 1.6 \, (3.2) for normal (inverted) ordering. We also obtain a strong preference for values of the CP phase δ\delta in the range [π,2π][\pi,2\pi], excluding values close to π/2\pi/2 at more than 4σ\sigma. More remarkably, our global analysis shows for the first time hints in favour of the normal mass ordering over the inverted one at more than 3σ\sigma. We discuss in detail the origin of the mass ordering, CP violation and octant sensitivities, analyzing the interplay among the different neutrino data samples.Comment: Updated neutrino oscillation analysis using the most recent results from T2K, NOν\nuA, RENO and Super-Kamiokande. 17 pages, 8 figures, 1 tabl

    AE Aurigae: first detection of non-thermal X-ray emission from a bow shock produced by a runaway star

    Get PDF
    Runaway stars produce shocks when passing through interstellar medium at supersonic velocities. Bow shocks have been detected in the mid-infrared for several high-mass runaway stars and in radio waves for one star. Theoretical models predict the production of high-energy photons by non-thermal radiative processes in a number sufficiently large to be detected in X-rays. To date, no stellar bow shock has been detected at such energies. We present the first detection of X-ray emission from a bow shock produced by a runaway star. The star is AE Aur, which was likely expelled from its birthplace by the encounter of two massive binary systems and now is passing through the dense nebula IC 405. The X-ray emission from the bow shock is detected at 30" to the northeast of the star, coinciding with an enhancement in the density of the nebula. From the analysis of the observed X-ray spectrum of the source and our theoretical emission model, we confirm that the X-ray emission is produced mainly by inverse Compton upscattering of infrared photons from dust in the shock front.Comment: Accepted for publication in the Astrophysical Journal with number ApJ, 757, L6. Four figure

    Neutrino Oscillations, Fluctuations and Solar Magneto-gravity Waves

    Full text link
    This review has two parts. The first part summarizes the current observational constraints on fluctuations in the solar medium deep within the solar Radiative Zone, and shows how the KamLAND and SNO-salt data combine to make the experimental determination of the neutrino oscillation parameters largely insensitive to prior assumptions about the nature of these oscillations. As part of a search for plausible sources of solar fluctuations to which neutrinos could be sensitive, the second part of the talk summarizes a preliminary analysis of the influence of magnetic fields on helioseismic waves. Using simplifying assumptions which should apply to modes in the solar radiative zone, we find a resonance between Alfven waves and helioseismic g-modes which potentially modifies the solar density profile fairly significantly over comparatively short distance scales, too narrow to be ruled out by present-day analyses of p-wave helioseismic spectra.Comment: Plenary talk presented at AHEP 2003, Valencia, Spain, October 200
    corecore