63 research outputs found

    Mapping genetic determinants of host susceptibility to Pseudomonas aeruginosa lung infection in mice.

    Get PDF
    Background: P. aeruginosa is one of the top three causes of opportunistic human bacterial infections. The remarkable variability in the clinical outcomes of this infection is thought to be associated with genetic predisposition. However, the genes underlying host susceptibility to P. aeruginosa infection are still largely unknown. Results: As a step towards mapping these genes, we applied a genome wide linkage analysis approach to a mouse model. A large F2 intercross population, obtained by mating P. aeruginosa-resistant C3H/HeOuJ, and susceptible A/J mice, was used for quantitative trait locus (QTL) mapping. The F2 progenies were challenged with a P. aeruginosa clinical strain and monitored for the survival time up to 7 days post-infection, as a disease phenotype associated trait. Selected phenotypic extremes of the F2 distribution were genotyped with high-density single nucleotide polymorphic (SNP) markers, and subsequently QTL analysis was performed. A significant locus was mapped on chromosome 6 and was named P. aeruginosa infection resistance locus 1 (Pairl1). The most promising candidate genes, including Dok1, Tacr1, Cd207, Clec4f, Gp9, Gata2, Foxp1, are related to pathogen sensing, neutrophils and macrophages recruitment and inflammatory processes. Conclusions: We propose a set of genes involved in the pathogenesis of P. aeruginosa infection that may be explored to complement human studie

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Rituximab in Combination with Corticosteroids for the Treatment of Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis: A NICE Single Technology Appraisal

    Get PDF
    As part of its single technology appraisal (STA) process, the National Institute for Health and Care Excellence (NICE) invited the manufacturer of rituximab (Roche Products) to submit evidence of the clinical and cost effectiveness of rituximab in combination with corticosteroids for treatment of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). The School of Health and Related Research Technology Appraisal Group at the University of Sheffield was commissioned to act as the independent Evidence Review Group (ERG). The ERG produced a critical review of the evidence for the clinical and cost effectiveness of the technology, based upon the manufacturer’s submission to NICE. The evidence was derived mainly from a double-blind, phase III, placebo-controlled trial of rituximab in patients with new or relapsed ‘severe’ AAV, which compared a rituximab treatment regimen with an oral cyclophosphamide treatment regimen. Intravenous cyclophosphamide is also commonly used but was not included in the pivotal trial. The evidence showed that rituximab is noninferior to oral cyclophosphamide in terms of induction of remission in adults with AAV and de novo disease, and is superior to oral cyclophosphamide in terms of remission in adults who have relapsed once on cyclophosphamide. The ERG concluded that the results of the manufacturer’s economic evaluation could not be considered robust, because of errors and because the full range of relevant treatment sequences were not modelled. The ERG amended the manufacturer’s model and demonstrated that rituximab was likely to represent a cost-effective addition to the treatment sequence if given after cyclophosphamide treatment

    Synchronizing Allelic Effects of Opposing Quantitative Trait Loci Confirmed a Major Epistatic Interaction Affecting Acute Lung Injury Survival in Mice

    Get PDF
    Increased oxygen (O2) levels help manage severely injured patients, but too much for too long can cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS) and even death. In fact, continuous hyperoxia has become a prototype in rodents to mimic salient clinical and pathological characteristics of ALI/ARDS. To identify genes affecting hyperoxia-induced ALI (HALI), we previously established a mouse model of differential susceptibility. Genetic analysis of backcross and F2 populations derived from sensitive (C57BL/6J; B) and resistant (129X1/SvJ; X1) inbred strains identified five quantitative trait loci (QTLs; Shali1-5) linked to HALI survival time. Interestingly, analysis of these recombinant populations supported opposite within-strain effects on survival for the two major-effect QTLs. Whereas Shali1 alleles imparted the expected survival time effects (i.e., X1 alleles increased HALI resistance and B alleles increased sensitivity), the allelic effects of Shali2 were reversed (i.e., X1 alleles increased HALI sensitivity and B alleles increased resistance). For in vivo validation of these inverse allelic effects, we constructed reciprocal congenic lines to synchronize the sensitivity or resistance alleles of Shali1 and Shali2 within the same strain. Specifically, B-derived Shali1 or Shali2 QTL regions were transferred to X1 mice and X1-derived QTL segments were transferred to B mice. Our previous QTL results predicted that substituting Shali1 B alleles onto the resistant X1 background would add sensitivity. Surprisingly, not only were these mice more sensitive than the resistant X1 strain, they were more sensitive than the sensitive B strain. In stark contrast, substituting the Shali2 interval from the sensitive B strain onto the X1 background markedly increased the survival time. Reciprocal congenic lines confirmed the opposing allelic effects of Shali1 and Shali2 on HALI survival time and provide unique models to identify their respective quantitative trait genes and to critically assess the apparent bidirectional epistatic interactions between these major-effect loci

    The effects of warming on the ecophysiology of two co-existing kelp species with contrasting distributions

    Get PDF
    The northeast Atlantic has warmed significantly since the early 1980s, leading to shifts in species distributions and changes in the structure and functioning of communities and ecosystems. This study investigated the effects of increased temperature on two co-existing habitat-forming kelps: Laminaria digitata, a northern boreal species, and Laminaria ochroleuca, a southern Lusitanian species, to shed light on mechanisms underpinning responses of trailing and leading edge populations to warming. Kelp sporophytes collected from southwest United Kingdom were maintained under 3 treatments: ambient temperature (12 °C), +3 °C (15 °C) and +6 °C (18 °C) for 16 days. At higher temperatures, L. digitata showed a decline in growth rates and Fv/Fm, an increase in chemical defence production and a decrease in palatability. In contrast, L. ochroleuca demonstrated superior growth and photosynthesis at temperatures higher than current ambient levels, and was more heavily grazed. Whilst the observed decreased palatability of L. digitata held at higher temperatures could reduce top-down pressure on marginal populations, field observations of grazer densities suggest that this may be unimportant within the study system. Overall, our study suggests that shifts in trailing edge populations will be primarily driven by ecophysiological responses to high temperatures experienced during current and predicted thermal maxima, and although compensatory mechanisms may reduce top-down pressure on marginal populations, this is unlikely to be important within the current biogeographical context. Better understanding of the mechanisms underpinning climate-driven range shifts is important for habitat-forming species like kelps, which provide organic matter, create biogenic structure and alter environmental conditions for associated communities

    Adverse Drug Reactions in Children—A Systematic Review

    Get PDF
    Adverse drug reactions in children are an important public health problem. We have undertaken a systematic review of observational studies in children in three settings: causing admission to hospital, occurring during hospital stay and occurring in the community. We were particularly interested in understanding how ADRs might be better detected, assessed and avoided
    corecore