194 research outputs found
Nanodiamonds carrying quantum emitters with almost lifetime-limited linewidths
Nanodiamonds (NDs) hosting optically active defects are an important
technical material for applications in quantum sensing, biological imaging, and
quantum optics. The negatively charged silicon vacancy (SiV) defect is known to
fluoresce in molecular sized NDs (1 to 6 nm) and its spectral properties depend
on the quality of the surrounding host lattice. This defect is therefore a good
probe to investigate the material properties of small NDs. Here we report
unprecedented narrow optical transitions for SiV colour centers hosted in
nanodiamonds produced using a novel high-pressure high-temperature (HPHT)
technique. The SiV zero-phonon lines were measured to have an inhomogeneous
distribution of 1.05 nm at 5 K across a sample of numerous NDs. Individual
spectral lines as narrow as 354 MHz were measured for SiV centres in
nanodiamonds smaller than 200 nm, which is four times narrower than the best
SiV line previously reported for nanodiamonds. Correcting for apparent spectral
diffusion yielded a homogeneous linewith of about 200 MHz, which is close to
the width limit imposed by the radiative lifetime. These results demonstrate
that the direct HPHT synthesis technique is capable of producing nanodiamonds
with high crystal lattice quality, which are therefore a valuable technical
material
Single germanium vacancy centres in nanodiamonds with bulk-like spectral stability
Motivated by the success of group IV colour centres in nanodiamonds (NDs) for
hybrid technology requiring a single photon source, we study single
germanium-vacancy (GeV) centres in NDs at room temperature with size
rangingfrom 10 to 50 nm and with remarkable spectral properties. We
characterize their zero-phonon line (ZPL), study their internal population
dynamics and compare their emission properties in the framework of a three
level model with intensity dependent de-shelving. Furthermore, we characterize
their lifetime, polarization and brightness. We find amaximum photon emission
count rate of 1.6 MHz at saturation. We also report a polarization visibility
of 92% from the fluorescence light, which potentially makes GeV centres
good candidates for quantum key distribution (QKD)requiring polarized single
photons. We show that the GeV in NDs presented in this work have a
comparable spectral stability compared to their bulk counterpart which is
needed for future applications using NDs.Comment: 7 pages, 5 figure
Sub-to-super-Poissonian photon statistics in cathodoluminescence of color center ensembles in isolated diamond crystals
Impurity-vacancy centers in diamond offer a new class of robust photon sources with versatile quantum properties. While individual color centers commonly act as single-photon sources, their ensembles have been theoretically predicted to have tunable photon-emission statistics. Importantly, the particular type of excitation affects the emission properties of a color center ensemble within a diamond crystal. While optical excitation favors non-synchronized excitation of color centers within an ensemble, electron-beam excitation can synchronize the emitters excitation and thereby provides a control of the second-order correlation function g2(0). In this letter, we demonstrate experimentally that the photon stream from an ensemble of color centers can exhibit g2(0) both above and below unity, thereby confirming long standing theoretical predictions by Meuret et al. [S. Meuret, L. H. G. Tizei, T. Cazimajou, et al., “Photon bunching in cathodoluminescence,” Phys. Rev. Lett., vol. 114, no. 19, p. 197401, 2015.]. Such a photon source based on an ensemble of few color centers in a diamond crystal provides a highly tunable platform for informational technologies operating at room temperature
Solid state synthesis of carbon-encapsulated iron carbide nanoparticles and their interaction with living cells †
Superparamagnetic carbon-encapsulated iron carbide nanoparticles (NPs), Fe 7 C 3 @C, with unique properties, were produced from pure ferrocene by high pressure-high temperature synthesis. These NPs combine the merits of nanodiamonds and SPIONs but lack their shortcomings which limit their use for biomedical applications. Investigation of these NPs by X-ray diffraction, electron microscopy techniques, X-ray spectroscopic and magnetic measurement methods has demonstrated that this method of synthesis yields NPs with perfectly controllable physical properties. Using magnetic and subsequent fractional separation of magnetic NPs from residual carbon, the aqueous suspensions of Fe 7 C 3 @C NPs with an average particle size of $25 nm were prepared. The suspensions were used for in vitro studies of the interaction of Fe 7 C 3 @C NPs with cultured mammalian cells. The dynamics of interaction of the living cells with Fe 7 C 3 @C was studied by optical microscopy using time-lapse video recording and also by transmission electron microscopy. Using novel highly sensitive cytotoxicity tests based on the cell proliferation assay and long-term live cell observations it was shown that the internalization of Fe 7 C 3 @C NPs has no cytotoxic effect on cultured cells and does not interfere with the process of their mitotic division, a fundamental property that ensures the existence of living organisms. The influence of NPs on the proliferative activity of cultured cells was not detected as well. These results indicate that the carbon capsules of Fe 7 C 3 @C NPs are air-tight which could offer great opportunities for future use of these superparamagnetic NPs in biology and medicine
Twisted Nanotubes of Transition Metal Dichalcogenides with Split Optical Modes for Tunable Radiated Light Resonators
Synthesized micro- and nanotubes composed of transition metal dichalcogenides
(TMDCs) such as MoS are promising for many applications in nanophotonics,
because they combine the abilities to emit strong exciton luminescence and to
act as whispering gallery microcavities even at room temperature. In addition
to tubes in the form of hollow cylinders, there is an insufficiently-studied
class of twisted tubes, the flattened cross section of which rotates along the
tube axis. As shown by theoretical analysis, in such nanotubes the interaction
of electromagnetic waves excited at opposite sides of the cross section can
cause splitting of the whispering gallery modes. By studying
micro-photoluminescence spectra measured along individual MoS tubes, it has
been established that the splitting value, which controls the energies of the
split modes, depends exponentially on the aspect ratio of the cross section,
which varies in "breathing" tubes, while the relative intensity of the modes in
a pair is determined by the angle of rotation of the cross section. These
results open up the possibility of creating multifunctional tubular TMDC
nanodevices that provide resonant amplification of self-emitting light at
adjustable frequencies
Unidirectional single-photon emission from germanium-vacancy zero-phonon lines: Deterministic emitter-waveguide interfacing at plasmonic hot spots
Striving for nanometer-sized solid-state single-photon sources, we investigate atom-like quantum emitters based on single germanium vacancy (GeV) centers isolated in crystalline nanodiamonds (NDs). Cryogenic characterization indicated symmetry-protected and bright (> 10^6 counts/s with off-resonance excitation) zero-phonon optical transitions with up to 6-fold enhancement in energy splitting of their ground states as compared to that found for GeV centers in bulk diamonds (i.e., up to 870 GHz in highly strained NDs vs 150 GHz in bulk). Utilizing lithographic alignment techniques, we demonstrate an integrated nanophotonic platform for deterministic interfacing plasmonic waveguides with isolated GeV centers in NDs that enables 10-fold enhancement of single-photon decay rates along with the emission direction control by judiciously designing and positioning a Bragg reflector. This approach allows one to realize the unidirectional emission from single-photon dipolar sources introducing a novel method that is alternative to the propagation-direction-dependent techniques based on chiral interactions or topological protection. The developed plasmon-based nanophotonic platform opens thereby new perspectives for quantum nanophotonics in general and for realizing entanglement between single photons and spin qubits, in particular
Giant quantum electrodynamic effects on single SiV color centers in nanosized diamonds
Understanding and mastering quantum electrodynamics phenomena is essential to the development of quantum nanophotonics applications. While tailoring of the local vacuum field has been widely used to tune the luminescence rate and directionality of a quantum emitter, its impact on their transition energies is barely investigated and exploited. Fluorescent defects in nanosized diamonds constitute an attractive nanophotonic platform to investigate the Lamb shift of an emitter embedded in a dielectric nanostructure with high refractive index. Using spectral and time-resolved optical spectroscopy of single SiV defects, we unveil blue shifts (up to 80 meV) of their emission lines, which are interpreted from model calculations as giant Lamb shifts. Moreover, evidence for a positive correlation between their fluorescence decay rates and emission line widths is observed, as a signature of modifications not only of the photonic local density of states but also of the phononic one, as the nanodiamond size is decreased. Correlative light–electron microscopy of single SiVs and their host nanodiamonds further supports these findings. These results make nanodiamond-SiVs promising as optically driven spin qubits and quantum light sources tunable through nanoscale tailoring of vacuum-field fluctuations.We acknowledge the financial support from the French National Agency for Research, Région
Nouvelle-Aquitaine, Idex Bordeaux (Research Program GPR Light), the EUR Light S&T (PIA3 Program, ANR-17-EURE0027), and the Laboratory for Transborder Cooperation LTC TRANS-LIGHT from University of Bordeaux and University of the Basque Country. B.L. acknowledges the Institut Universitaire de France. R.E. and J.A. acknowledge financial support from the Basque Government for consolidated groups of the Basque University (Grant IT 1526-22) and MCIN/AEI/10.13039/501100011033/(Grant PID2019-107432GB-I00).Peer reviewe
Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology
We present an extensive, large-scale, long-term and multitaxon database on phenological and climatic variation, involving 506,186 observation dates acquired in 471 localities in Russian Federation, Ukraine, Uzbekistan, Belarus and Kyrgyzstan. The data cover the period 1890-2018, with 96% of the data being from 1960 onwards. The database is rich in plants, birds and climatic events, but also includes insects, amphibians, reptiles and fungi. The database includes multiple events per species, such as the onset days of leaf unfolding and leaf fall for plants, and the days for first spring and last autumn occurrences for birds. The data were acquired using standardized methods by permanent staff of national parks and nature reserves (87% of the data) and members of a phenological observation network (13% of the data). The database is valuable for exploring how species respond in their phenology to climate change. Large-scale analyses of spatial variation in phenological response can help to better predict the consequences of species and community responses to climate change.Peer reviewe
- …
