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Abstract
Colour centres in nanodiamonds are an important resource for applications in quantum sensing,
biological imaging, and quantumoptics. Herewe report unprecedented narrowoptical transitions for
individual colour centres in nanodiamonds smaller than 200 nm. This demonstration has been
achieved using the negatively charged silicon vacancy centre, which has recently received considerable
attention due to its superb optical properties in bulk diamond.Wehavemeasured an ensemble of
silicon-vacancy centres across numerous nanodiamonds to have an inhomogeneous distribution of
1.05 nm at 5 K. Individual spectral lines as narrower than 360MHzweremeasured in photolumines-
cence excitation, and correcting for apparent spectral diffusion yielded an homogeneous linewidth of
about 200MHzwhich is close to the lifetime limit. These results indicate the high crystalline quality
achieved in these nanodiamond samples, and advance the applicability of nanodiamond-hosted
colour centres for quantumoptics applications.

Nanodiamonds (NDs)hosting optically active point defects (‘colour centres’) are an important technical
material for applications in quantum sensing [1], biological imaging [2–4], and quantumoptics [5]. One colour
centre which has attracted recent attention is the negatively charged silicon vacancy (SiV−)defect, which consists
of a silicon atom taking the place of two adjacent carbon atoms in the lattice [6]. The SiV−centre in diamond has
risen to prominence on the basis of its superb spectral properties, including a strong zero-phonon line (ZPL) at
737 nmwhich contains 70%of thefluorescence from this colour centre [7]. In low-strain bulk diamond, the
SiV−centre has exhibited lifetime-limited spectral linewidths at 4 Kwith no spectral diffusion [8]. These ideal
properties have enabled the efficient production of indistinguishable photons fromdistinct emitters [9]. Recent
studies in bulk diamond have shown that the electronic spin coherence time in the SiV−centre is fundamentally
limited by fast phonon-induced orbital relaxation in the ground state [10, 11]. Small NDs should impose
boundary conditions that prevent the availablilty of phonons at the critical frequency, thereby extending
coherence time. This has increased themotivation tofindwell-behaved SiV−centres in the nanodiamond
environment.

Although SiV−centres have been observed tofluoresce inNDs as small asmolecules (1.6 nm) [12], theND
host has always led to less homogeneous photon emission [13–16]. Some promising results have been recently
reported for larger hybrid nanostructures [17], but the obstacle persists for SiV−applications requiringND
environments. Herewe report unprecedented optical properties of SiV−colour centres hosted in
nanodiamonds. Individual spectral lines close to the lifetime limit weremeasured for SiV−centres in
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nanodiamonds smaller than 200 nm, representing an improvement of nearly four times over the best SiV−line
previously reported for nanodiamonds [18]. Such narrow lines in small nanodiamonds are of interest for a range
of applications, including coupling to cavities [19].

The nanodiamond crystals used in this studywere produced using a recently reported synthesis technique
[20]. This novel technique directly produces nanometre- andmicrometre-sized crystals during high-pressure
high-temperature (HPHT) diamond synthesis. HPHTdiamond synthesis reproduces the conditions required
for natural diamond formation, where the pressure and temperaturemake diamond the stable formof carbon.
In contrast to industrial bulk diamond synthesis, themetal catalyst was left out in order to ensuremicro- and
nanodiamond growth. Siliconwas introduced during the growth process, and incorporated into the diamond
crystals to form the negatively charged silicon vacancy centre. The narrow spectral lines reported here
demonstrate that this directHPHT synthesis technique is capable of producing nanodiamondswith high
crystalline quality, which are therefore a valuable technicalmaterial for quantumoptics applications.

The nanodiamondswere suspended in a solution of ultrapurewater and ethanol, andwere ultrasonicated to
disperse the crystals. This solutionwas spin coated on a thermally conducting substrate (type IIa diamond)
containingmarkers to facilitate accurate comparison between confocalfluorescence imaging and scanning
electronmicroscope (SEM) imaging, as shown in figures 1(a) and (b). This enabled correlation of the optical
spectroscopywith theND shape and size. Optical excitationwas provided by a continuous-wave 532 nm
frequency-doubled diode-pumped solid-state laser. Fluorescence images and spectra were recordedwith a
home-built confocalmicroscope, using an air objective withNA=0.95. To resolve thefine-structure of the
SiV− the samplewasmounted in a helium-flow-cryostat. The cryostat cold-finger reached a temperature of 5 K,
and the thermal conductivity of the substrate suggested that theNDswere at a temperature below 8 K.
Photoluminescence spectra weremeasured on a spectrometer (gratingwith 1200 lines mm−1) for seven
fluorescent spots containing several SiV−centres. The summed ensemble ZPL is shown infigure 1(c), andwas
found to have a linewidth of 1.05 nm (581 GHz) representing the inhomogeneous distribution acrossmultiple
SiV−centres. This is broader than SiV−ensembles in low-strain bulk diamondwhich exhibited linewidths of
8 GHz [21], but narrower than previously reportedNDobservations of about 5 nm (3 THz) [22]. It is concluded
that the novelHPHT fabrication technique used here is capable of producingNDswith amore uniform crystal
lattice than previous fabricationmethods.

Due to the diffraction limited resolution of opticalmicroscopy, bright spots in thefluorescence image did
not necessarily correspond to individual SiV−centres or even to individual nanodiamonds. Photon
autocorrelation statistics (the g 2( ) function) are typically used to demonstrate single-emitter detection (where

<g 0 0.52 ( )( ) ). The deepest dip observed herewas only to a relative height of =g 0 0.822 ( )( ) as shown in
figure 1(d). This corresponds to six emitters if theywere equally bright, andmore than six if somewere lying
outside the optimumcollection region of the confocalmicroscope.Most of thefluorescent spots did not
produce ameasurable dip, suggesting the presence ofmany SiV−centres.

Despite the ultrasonication used in sample preparation, SEM imaging revealed clustering ofNDs as shown in
figure 2(a), resulting inmore than oneND in the confocal detection spot. In this case it was not possible to

Figure 1. Spectral distribution acrossmultiple nanodiamonds. (a) Fluorescence image ofNDs on a diamond substrate near amarker.
Green circlesmark spots containing SiV−centres as identified by theirfluorescence spectrum. (b) SEM image of same sample region.
Themarked spots were identified asNDs (or clusters ofNDs) in the SEMand their size determinedwith an accuracy of 20 nm. (c)
Photoluminescence spectrum averaged over seven fluorescent spots containing a total ofmore than 50 SiV−centres. The illustrated
lorentzian fit was used tomeasure the linewidth. (d)Themost visible dip in the g 2( ) function at afluorescence spot was only to a depth
of 82%, corresponding to about six emitters (assuming equal brightness).
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determinewhich of the clusteredNDs contained SiV−centres. Subsequent to themeasurements reported here,
some nanodiamondswere spin-coated froma solution of chloroform (with residual ethanol and ultrapure
water) following comments in [28], and this reduced clustering but did not eliminate it. Future experimentsmay
be able to further reduce the clustering ofNDs throughmore advanced preparation techniques. The PL spectra
that exhibited a SiV−ZPLwere typically found to containmore than the four-line structure that is expected for a
single centre [6, 23, 24], as shown infigure 2(b). This is another indication of the presence ofmultiple
SiV−centres in thefluorescence detection volume. From the g 2( ) data and clustering observations we conclude
that the inhomogeneous linewidth infigure 1(c) is from an ensemble ofmore than 50 SiV−centres. An
interesting implication of the high number-density of SiV−in these small NDs is the reasonable probability of
two centres being in close proximity. For two nearly resonant centres at close separation, direct dipole–dipole
interactionwould cause a shifting of the spectral lines. It is possible that this effect contributes to a broadening of
the ensemble linewidth.

Since spatial resolutionwas unable to isolate individual SiV−centres, resonant excitation techniqueswere
used to allow spectral isolation. To performphotoluminescence excitation (PLE) spectroscopy a resonant laser
was scanned through the ZPLwhile fluorescence was detected off-resonantly in the 750–810 nmband (the
phonon sideband). Individual isolated optical transitions were excited in thismanner and the spectral linewidths
weremeasured to high precision (the instrument limit of the laser was<100 kHz). Resonant excitation can lead
to power broadening, although this effect was found to be negligible for excitation laser powers below 4 nW
entering themicroscope objective. Figure 3(a) shows a PLE spectrum exhibiting a SiV−linewidth of 354 MHz,
for aNDbelow 200 nm in size from the cluster shown infigure 2(a). This is considerably narrower than the
previous best SiV−lines inNDs of 1.4 GHz [18].

This excitation linewasmeasured bymakingmultiple scans at 400MHz s−1 and averaging, and it is apparent
infigure 3(b) that additional information is contained in the individual scans. The line positionwas observed to
changewith time in amanner similar to the spectral diffusion that has been observed for other colour centres in
diamond [25]. Interpreting this behaviour as spectral diffusion and displacing each scan to overlap the peak
positions yielded an homogeneous linewidth of 206 MHz as illustrated infigure 3(b). The slope of the g 2( ) dip in
figure 1(d) indicates that the SiV−centres in theseNDs had an excited state decay lifetime of about 1.7 ns, which
is consistent withmeasurements in bulk diamond [8]. This fluorescence lifetime imposes a fourier-transform-
limited linewidth of 100MHz.However, it was not possible to reliably identify which of the four ZPL transitions
this PLE linewas associatedwith since the distribution of ZPL positions across the ensemble of SiV−centres was
far greater than thefine-structure splitting. At low temperature two of these four transitions are known to be
broadened due to thermalisation in the excited state [8]. It is therefore difficult in thisND situation to compare
themeasured linewidth to the lifetime limit in detail, however it is clear that the values are close.

Figure 3(c) shows a summary of similar PLEmeasurementsmade for 13 SiV−lines, illustrating themeasured
linewidth and peak height. For technical reasons including spatial drift of the confocalmicroscope and blinking
of the SiV−sites (discussed below), most of the PLE spectra were recorded in far fewer than the 22 passes
contained infigure 3(b). It is apparent that single-pass spectra typically gave a narrower linewidth than averages
overmultiple passes, as expected in the presence of slow spectral diffusion.However, it is striking that the peaks
with the lowest amplitude also had the broadest linewidth. This is the inverse of the trend expected for the

Figure 2.PL for a single spot in the confocal image. (a) SEM image showing this spot ismade up of a number ofNDs each smaller than
200 nm.It was not possible to associate spectral features with specificNDswithin the cluster. (b)PL spectrum recorded for thisND
cluster, showingmany lines corresponding to numerous SiV−centres. The circled line is the location of the feature examined in PLE in
figure 3.
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situation of power broadening. Indeed, the reciprocal relationship illustrated infigure 3(c) shows that these PLE
lines enclosed essentially the same area and therefore the linewidth variationwas not related to excitation
intensity. It is interpreted that these spectra corresponded to SiV−sites exhibiting spectral diffusion at a rate
much faster than the 50 Hz photon-counting-bins used for thesemeasurements. Such a situationwouldmean
that even single- or double-pass scanswould trace out the averaged ‘envelope’ of the rapidly shifting spectral
feature, leading to broader but lower peaks. Despite this broadening of some of the lines, a clearmajority had
similar characteristics to the line studied infigures 3(a) and (b).

The narrow optical transitions indicate the high crystalline quality of theseNDs. These results are promising
for SiV−applications requiring small pieces of diamond. Unfortunately, a blinking phenomenonwas observed
inwhich thefluorescence switched between twodiscrete levels as shown infigure 4(a). This behaviour is
consistent with previous reports of SiV−centres inNDs [26], and it introduces challenges in the development of
applications involving colour centres inNDs. In order to obtainmore information about the processes
responsible for blinking, time series of the fluorescence ratewere recorded for a fewminutes at various incident
laser powers in the range of 30–1000 nW.Rawmeasurement data are included in the supplementary data (see
blinking_time_trace csvfiles, available fromURL). The laser frequencywas chosen tomaximise the
fluorescence, indicating resonancewith the SiV−optical transition. The switching rates (Ron,Roff)were
determined from the typical durations of ‘on’ and ‘off’ events in these time series.

A double-threshold techniquewas used to identify the ‘on’ and ‘off’ events, since in general the switching
contrast was smaller than the noise amplitude as seen infigure 4(a). In this technique the switch-on threshold
was higher than the switch-off threshold. A preliminary thresholdTi wasmanually chosen to start this process,
shownby the dashed blue line infigure 4(a). Themean Ioff and standard deviation soff were calculated for all
data points belowTi, and Ion and son were determined for the data points aboveTi. Actual switching thresholds
were then calculated as s= +T I kon off off and s= -T I koff on on for some constant k. These thresholdsmean
that a switch of state is identified only if the signal deviates from the current state bymore than k times the
standard deviation (noise level) in the current state.

The fundamental uncertainty in extracting ‘on’ and ‘off’ durations from the blinking time traces arose
because short switching eventsmay be indistinguishable fromnoise spikes. This is directly related to the
strictness of the switching thresholdsTon andToff, which are determined by the constant k. Various thresholds
beginning at k=2were used, with k increasing to the point where the threshold lostmeaning (when <T Ioff off ,
meaning that the switch-off threshold level went below themean ‘off’ count-rate). Because kwas varied over a
broad range (typically up to about k= 3) it was not important that themeans and standard deviations arose from
Ti rather than the actualTon andToff. For each k-value histogramswere produced for the duration of on and off
intervals, and characteristic time-constants were obtained from fitting the histogramswith exponential decay

Figure 3.Resonant excitation to probe individual SiV−-centres. (a)Photoluminescence excitation (PLE) spectrumof a single
transitionwith averaged linewidth of 354 MHz (data in blue, fit to average in purple, spectral diffusion interpretation in green). (b)
The raw data consisted of 22 separate scans, and the line positionwas found to vary between scans. Interpreting this as spectral
diffusion and shifting each scan for correction gave a homogeneous linewidth of 206 MHz (green curve in (b)), which is close to the
lifetime limit. (c) Summary of PLEmeasurements for 13 spectral lines, showingmanywith linewidths below 400 MHz. Pale blue data
points are from single-pass scans of the line;middle-blue are fromdouble-pass scans; blue, purple,magenta indicate 5, 9, 22 passes
respectively. Themagenta point corresponds to the data shown in (a) and (b). The distribution of points closely follows a reciprocal
relationship (orangefit excludes the purple spotwith nine passes), indicating that the area under the PLE linewas similar for all of
these spectra. It is interpreted that some spots have spectral diffusion over about 1 GHz at a ratemuch faster than themeasurement
(broadening and lowering the PLE peak).
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functions as illustrated infigure 4(b). The switching rates (Ron,Roff)were taken as the reciprocal of the
characteristic duration of off and on intervals respectively, and are shown as a function of excitation intensity in
figure 4(c). The data points and vertical error bars infigure 4(c) represent themean and standard deviation of the
results from the range of plausible thresholds (the range of k-values). Although the uncertaintymargins are high,
it is clear that both rates varywith applied laser power.

Precise identification of these switching processes is challenging and left open for further investigations,
however our observations exclude a few obvious candidates. The blinkingwas observed using resonant
excitation, which is capable of optically pumping the system to a ‘dark’ ground state fromwhich all excitation
transitions are non-resonant. SiV−has an orbital degeneracy in its ground state, providing a potential dark state,
but if this were the cause of the blinking then the switch-on rateRonwould correspond to the orbital relaxation
process in the ground state and should therefore be independent of excitation intensity. The bestfit for such a
case is illustrated infigure 4(b) by a dashed line, and it is excluded by the data. In analogywith the nitrogen
vacancy -NV /NV0 system, photo-ionisationwould provide another potential ‘dark’ state leading to blinking.
The neutral SiV0 centre is known in diamond, and has been attributed to a ZPL at 946 nm. The 736 nm resonant
excitation for SiV−would therefore be far from resonant to SiV0, and is unlikely at the low intensities used here
to be capable of exciting appreciable photo-ionisation back to the negative charge state. Unlike the nitrogen
vacancy centre, the neutral charge state SiV0 is tooweaklyfluorescent to be detectable at the single-site level,
making it impossible to check for its presence in the fluorescence spectrameasured here.

It has been argued that the SiV−centre is remarkably insensitive to strain and electric field perturbations
[8, 9], but the shielding effects of symmetry should be reduced as the centre becomesmore distorted. In
nanodiamonds external charge fluctuationsmaywell be ‘visible’ to the SiV−centres, and these are a plausible
cause for the spectral diffusion and blinking reported here. Any surface chemistrywhich is photo active would
account for the increasing blinking rates with higher excitation intensities. It has been shown that surface
treatment can control blinking offluorescent colour centres [27] and it is expected that futurework in this
directionmay improve the performance of SiV−centres inNDs. In fact, these surface effects could be the origin
of both the spectral diffusion and the blinking. It was not possible to directly compare the spectral diffusion
process with the observed blinking because power broadeningmasks the diffusion effect.

In conclusion, we havemeasured the narrowest SiV−spectral lines inNDs of 354MHz, and this can be
reduced to 200MHz after correcting for spectral diffusion. This is close to the transform limit, and suggests that
these direct-HPHT synthesisedNDs have a crystal quality that surpasses theNDs used in previous
SiV−experiments. Thismaterial is therefore uniquely attractive for use in quantumoptics applications,
including cavities. Existing limitations due to blinking effects and spectral diffusion are likely due to interaction

Figure 4.Blinking of fluorescence. (a)Under resonant excitation the SiV−centreswere observed to change between two discrete
fluorescence levels. Here thefirstminute of data for 30 nWexcitation power on a SiV−line at 736.612 nm is shown as a typical
example, with the switching thresholdsTon andToff illustrated for k=2.5. The rawmeasurement data are included in the
supplementary data (see blinking_time_trace csv files, available fromURL). (b)Histograms of duration for the ‘on’ and ‘off’ intervals
gave exponential distributions, fromwhich a characteristic time can be determined (and hence switching rate). The histogram for the
‘on’ events is shown for the 30 nWdata and thresholds of k=2.5. (c)The ‘on’ and ‘off’ rates (Ron andRoff) both increase with
excitation laser intensity, with linear and quadratic fits illustrated respectively. The dashed line is the bestfit for a constantRon. The
horizontal error bars correspond to a 15%uncertainty in determining the laser power applied to the SiV−centre, and the vertical error
bars represent the uncertainty in judging a switching event.
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with other defects at the surface of theNDs, and this problem is fundamental to all colour centres close to the
diamond surface (regardless of crystalline quality). This should be tackled by surface treatment.
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