192 research outputs found

    Variable Free Spectral Range Spherical Mirror Fabry-Perot Interferometer

    Full text link
    A spherical Fabry-Perot interferometer with adjustable mirror spacing is used to produce interference fringes with frequency separation (c/2L)/N, N=2-15. The conditions for observation of these fringes are derived from the consideration of the eigenmodes of the cavity with high transverse indices.Comment: 11 pages, 7 figures, accepted to Siberian Journal of Physic

    Positioning errors of pencil-beam interferometers for long trace profilers

    Full text link
    We analyze the random noise and the systematic errors of the positioning of the interference patterns in the long trace profilers (LTP). The analysis, based on linear regression methods, allows the estimation of the contributions to the positioning error of a number of effects, including non-uniformity of the detector photo-response and pixel pitch, read-out and dark signal noise, ADC resolution, as well as signal shot noise. The dependence of the contributions on pixel size and on total number of pixels involved in positioning is derived analytically. The analysis, when applied to the LTP II available at the ALS optical metrology laboratory, has shown that the main source for the random positioning error of the interference pattern is the read-out noise estimated to be {approx}0.2 rad. The photo-diode-array photo-response and pixel pitch non-uniformity determine the magnitude of the systematic positioning error and are found to be {approx}0.3 rad for each of the effects. Recommendations for an optimal fitting strategy, detector selection and calibration are provided. Following these recommendations will allow the reduction of the error of LTP interference pattern positioning to a level adequate for the slope measurement with 0.1-rad accuracy

    Nonlinear magneto-optic effects with ultranarrow widths

    Get PDF
    Abstract Several dispersion-like features in the magnetic field dependence of the nonlinear magneto-optic effect were observed in an experiment performed on rubidium atoms contained in a vapor cell with anti-relaxation coating. The narrowest feature has effective resonance width γ=gµ∆B z ≈1.3 Hz, where ∆B z ≈2.8 µGs is the peak-to-peak separation. The observed nontrivial dependence of the magneto-optic effect on transverse magnetic fields is discussed. The results of this work may be applied to low-field magnetometry, to parity where g is the Lande factor, µ is the Bohr magneton, and ∆B z is the peak-to-peak separation of the feature. This is approximately eight or nine orders of magnitude narrower than the effective widths of the linear resonant Faraday (Macaluso-Corbino

    Energy Transfer in Polystyrene Nanoparticles with Encapsulated 2,5-Diphenyloxazole

    Get PDF
    As the first step to design nanosystems for X-ray excited sensitising of singlet oxygen, nanoparticles of polystyrene (PS NP) and polystyrene with encapsulated diphenyloxazole molecules (PS-PPO NP) were synthesized. Inside the PS-PPO NP, the electronic excitation energy transfer from polystyrene matrix to encapsulated PPO molecules takes place; efficiency of such transfer was roughly estimated to be about 0.37. X-ray stimulated luminescence of PS-PPO NP was registered

    Performance of the upgraded LTP-II at the ALS Optical Metrology Laboratory

    Get PDF
    The next generation of synchrotrons and free electron laser facilities requires x-ray optical systems with extremely high performance, generally of diffraction limited quality. Fabrication and use of such optics requires adequate, highly accurate metrology and dedicated instrumentation. Previously, we suggested ways to improve the performance of the Long Trace Profiler (LTP), a slope measuring instrument widely used to characterize x-ray optics at long spatial wavelengths. The main way is use of a CCD detector and corresponding technique for calibration of photo-response non-uniformity [J. L. Kirschman, et al., Proceedings of SPIE 6704, 67040J (2007)]. The present work focuses on the performance and characteristics of the upgraded LTP-II at the ALS Optical Metrology Laboratory. This includes a review of the overall aspects of the design, control system, the movement and measurement regimes for the stage, and analysis of the performance by a slope measurement of a highly curved super-quality substrate with less than 0.3 microradian (rms)slope variation

    Development of a new generation of optical slope measuring profiler

    Full text link
    A collaboration, including all DOE synchrotron labs, industrial vendors of x-ray optics, and with active participation of the HBZ-BESSY-II optics group has been established to work together on a new slope measuring profiler -- the optical slope measuring system (OSMS). The slope measurement accuracy of the instrument is expected to be<50 nrad for the current and future metrology of x-ray optics for the next generation of light sources. The goals were to solidify a design that meets the needs of mirror specifications and also be affordable; and to create a common specification for fabrication of a multi-functional translation/scanning (MFTS) system for the OSMS. This was accomplished by two collaborative meetings at the ALS (March 26, 2010) and at the APS (May 6, 2010)

    Progress of Multi-Beam Long Trace-Profiler Development

    Get PDF
    The multi-beam long trace profiler (LTP) under development at NASA s Marshall Space Flight Center[1] is designed to increase the efficiency of metrology of replicated X-ray optics. The traditional LTP operates on a single laser beam that scans along the test surface to detect the slope errors. While capable of exceptional surface slope accuracy, the LTP single beam scanning has slow measuring speed. As metrology constitutes a significant fraction of the time spent in optics production, an increase in the efficiency of metrology helps in decreasing the cost of fabrication of the x-ray optics and in improving their quality. Metrology efficiency can be increased by replacing the single laser beam with multiple beams that can scan a section of the test surface at a single instance. The increase in speed with such a system would be almost proportional to the number of laser beams. A collaborative feasibility study has been made and specifications were fixed for a multi-beam long trace profiler. The progress made in the development of this metrology system is presented
    • …
    corecore