8 research outputs found

    The Molecular Networks of microRNAs and Their Targets in the Drug Resistance of Colon Carcinoma

    No full text
    Drug resistance is one of the major forces driving a poor prognosis during the treatment and progression of human colon carcinomas. The molecular mechanisms that regulate the diverse processes underlying drug resistance are still under debate. MicroRNAs (miRNAs) are a subgroup of non-coding RNAs increasingly found to be associated with the regulation of tumorigenesis and drug resistance. We performed a systematic review of the articles concerning miRNAs and drug resistance in human colon cancer published from 2013 onwards in journals with an impact factor of 5 or higher. First, we built a network with the most studied miRNAs and targets (as nodes) while the drug resistance/s are indicated by the connections (edges); then, we discussed the most relevant miRNA/targets interactions regulated by drugs according to the network topology and statistics. Finally, we considered the drugs as nodes in the network, to allow an alternative point of view that could flow through the treatment options and the associated molecular pathways. A small number of microRNAs and proteins appeared as critically involved in the most common drugs used for the treatment of patients with colon cancer. In particular, the family of miR-200, miR34a, miR-155 and miR-17 appear as the most relevant microRNAs. Thus, regulating these miRNAs could be useful for interfering with some drug resistance mechanisms in colorectal carcinoma.Simple Summary: We systematically reviewed the recent scientific publications describing the role of microRNAs in the regulation of drug resistance in colon cancer. To clarify the intricate web of resulting genetic and biochemical interactions, we used a machine learning approach aimed at creating: (i) networks of validated miRNA/target interactions involved in drug resistances and (ii) drug-centric networks, from which we identified the major clusters of proteins affected by drugs used in the treatment of colon cancer. Finally, to facilitate a high-level interpretation of these molecular interactions, we determined the cellular pathways related with drug resistance and regulated by the miRNAs in colon cancer. Abstract: Drug resistance is one of the major forces driving a poor prognosis during the treatment and progression of human colon carcinomas. The molecular mechanisms that regulate the diverse processes underlying drug resistance are still under debate. MicroRNAs (miRNAs) are a subgroup of non-coding RNAs increasingly found to be associated with the regulation of tumorigenesis and drug resistance. We performed a systematic review of the articles concerning miRNAs and drug resistance in human colon cancer published from 2013 onwards in journals with an impact factor of 5 or higher. First, we built a network with the most studied miRNAs and targets (as nodes) while the drug resistance/s are indicated by the connections (edges); then, we discussed the most relevant miRNA/targets interactions regulated by drugs according to the network topology and statistics. Finally, we considered the drugs as nodes in the network, to allow an alternative point of view that could flow through the treatment options and the associated molecular pathways. A small number of microRNAs and proteins appeared as critically involved in the most common drugs used for the treatment of patients with colon cancer. In particular, the family of miR-200, miR34a, miR-155 and miR-17 appear as the most relevant microRNAs. Thus, regulating these miRNAs could be useful for interfering with some drug resistance mechanisms in colorectal carcinoma

    Anthraquinone Rhein Exhibits Antibacterial Activity against Staphylococcus aureus

    No full text
    Staphylococcus aureus (S. aureus) represents an important pathogen of clinical relevance, causing a wide variety of symptoms. The broad distribution of multidrug-resistant strains necessarily demands new antibacterial agents for the treatment of S. aureus infections. The aim of this study was to assess the antibacterial activity of plant-derived compounds, pure 4,5″-dihydroxy-anthraquinone-2-carboxylic acid (Rhein), against standard and clinical isolated S. aureus strains. The hemolysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays were used to determine the cytotoxicity on human erythrocytes and bronchial epithelial cells after treatment with Rhein. The antibacterial effect was assessed via disk diffusion test, broth microdilution methods, time-killing assays and live–dead evaluation (50–0.39 µg/mL). Rhein effect on the hemolytic activity of α-toxin and catalase were estimated. Moreover, crystal violet (CV) assay evaluated its impact on biofilm biomass. The compound exhibited 50% cytotoxic concentration (CC50) and 50% hemolysis concentration (EC50) of 43.6 and >50 µg/mL, respectively. The minimum inhibitory concentration (MIC) of Rhein was 12.5 µg/mL for all tested strains, exerting bacteriostatic action. MIC and sub-MIC concentrations of Rhein significantly reduced hemolytic and catalase activities, impairing the major virulence factors of S. aureus strains. Rhein also reduced biofilm biomass in a dose-dependent manner, reaching rates of about 50% eradication at a dose of 50 µg/mL. These findings suggest that Rhein could represent a promising therapeutic option for the treatment of S. aureus infections

    Prevalence and Antibiotic Resistance Profile of Bacterial Pathogens in Aerobic Vaginitis: A Retrospective Study in Italy

    No full text
    Aerobic vaginitis (AV) is a vaginal infectious condition, characterized by a high inflammatory response and/or signs of epithelial atrophy, a decrease in the amount of Lactobacillus spp. and an increase in enteric origin bacteria. AV, often misdiagnosed, is difficult to treat due to the emerging spread of multi-drug resistant bacterial strains. The present study aimed to define the prevalence of AV, to detect causative bacteria and their antimicrobial resistance pattern. Women 10–95 years old, admitted to San Giovanni di Dio e Ruggi d’Aragona Hospital, Salerno, Italy (in the years 2015–2019) are included in the study. Bacterial identification and antibiotic susceptibility tests were carried out by VITEK® 2. Among 2069 patients, 1176 tested positive for microbial growth. A higher incidence of infection was found in the 55–64 age group. Among the pathogenic strains, 50.4% were Gram-negative, and 49.6% were Gram-positive. Escherichia coli (E. coli) (32.5%) was the most representative strain, followed by Enterococcus faecalis (E. faecalis) (29.4%), Klebsiella pneumoniae (K. pneumoniae) (7.8%) and Enterococcus faecium (E. faecium) (7.7%). E. coli showed high sensitivity to carbapenems and amikacin. K. pneumoniae carbapenems resistance was fluctuating over time. Alarming resistance to vancomycin was not recorded for Enterococci. Both strains were sensitive to teicoplanin, linezolid and tigecycline. Proper diagnosis and an effective therapeutic approach are needed to improve AV management

    Focal adhesion kinase inhibitor TAE226 combined with Sorafenib slows down hepatocellular carcinoma by multiple epigenetic effects

    No full text
    BackgroundHepatocellular carcinoma (HCC) is one of the most common and lethal malignant tumours worldwide. Sorafenib (SOR) is one of the most effective single-drug systemic therapy against advanced HCC, but the identification of novel combination regimens for a continued improvement in overall survival is a big challenge. Recent studies highlighted the crucial role of focal adhesion kinase (FAK) in HCC growth. The aim of this study was to investigate the antitumor effects of three different FAK inhibitors (FAKi), alone or in combination with SOR, using in vitro and in vivo models of HCC.MethodsThe effect of PND1186, PF431396, TAE226 on cell viability was compared to SOR. Among them TAE226, emerging as the most effective FAKi, was tested alone or in combination with SOR using 2D/3D human HCC cell line cultures and HCC xenograft murine models. The mechanisms of action were assessed by gene/protein expression and imaging approaches, combined with high-throughput methods.ResultsTAE226 was the more effective FAKi to be combined with SOR against HCC. Combined TAE226 and SOR treatment reduced HCC growth both in vitro and in vivo by affecting tumour-promoting gene expression and inducing epigenetic changes via dysregulation of FAK nuclear interactome. We characterized a novel nuclear functional interaction between FAK and the NuRD complex. TAE226-mediated FAK depletion and SOR-promoted MAPK down-modulation caused a decrease in the nuclear amount of HDAC1/2 and a consequent increase of the histone H3 lysine 27 acetylation, thus counteracting histone H3 lysine 27 trimethylation.ConclusionsAltogether, our findings provide the first evidence that TAE226 combined with SOR efficiently reduces HCC growth in vitro and in vivo. Also, our data highlight that deep analysis of FAK nuclear interactome may lead to the identification of new promising targets for HCC therapy

    Focal adhesion kinase inhibitor TAE226 combined with Sorafenib slows down hepatocellular carcinoma by multiple epigenetic effects

    Get PDF
    Background & Aims Hepatocellular carcinoma (HCC) is one of the most common and lethal malignant tumours worldwide. Sorafenib (SOR), the first-line systemic treatment against advanced HCC, causes resistance as unresolved question. Recent studies highlighted the ability of focal adhesion kinase (FAK) inhibitors (FAKi) in reducing HCC growth. Therefore, we investigated the antitumor effects of three different FAKi, alone or in combination with SOR, using in vitro and in vivo models of HCC. Methods The effect of PND1186, PF431396, TAE226 on cell viability was compared to SOR. TAE226, emerging as the most effective FAKi, was then tested alone or in combination with SOR using 2D/3D human HCC cell line cultures and HCC xenograft murine models. The mechanisms of action were assessed by gene/protein expression and imaging approaches, combined with high-throughput methods. Results TAE226 emerged as the more effective FAKi to be combined with SOR against HCC. Combined TAE226 plus SOR treatment reduced HCC growth both in vitro and in vivo by affecting tumour-promoting gene expression and inducing epigenetic changes via dysregulation of the nuclear interactome of FAK. In particular, we characterize a novel nuclear functional interaction between FAK and the NuRD complex. TAE226-mediated FAK depletion and SOR-promoted MAPK down-modulation caused a decrease of the nuclear amount of HDAC1/2 with consequent increase of histone H3 lysine 27 acetylation, counteracting its trimethylation. Conclusions Altogether, our findings provide the first evidence that TAE226 combined with SOR efficiently reduce HCC growth in vitro and in vivo. Our data also highlight that deep analysis of FAK nuclear interactome may lead to the identification of new promising therapeutic approaches for HCC
    corecore