28 research outputs found

    Co-regulated expression of alpha and beta mRNAs encoding HLA-DR surface heterodimers is mediated by the MHCII RNA operon

    Get PDF
    Major histocompatibility complex class II (MHCII) molecules are heterodimeric surface proteins involved in the presentation of exogenous antigens during the adaptive immune response. We demonstrate the existence of a fine level of regulation, coupling the transcription and processing of mRNAs encoding α and β chains of MHCII molecules, mediated through binding of their Untraslated Regions (UTRs) to the same ribonucleoproteic complex (RNP). We propose a dynamic model, in the context of the ‘MHCII RNA operon’ in which the increasing levels of DRA and DRB mRNAs are docked by the RNP acting as a bridge between 5′- and 3′-UTR of the same messenger, building a loop structure and, at the same time, joining the two chains, thanks to shared common predicted secondary structure motifs. According to cell needs, as during immune surveillance, this RNP machinery guarantees a balanced synthesis of DRA and DRB mRNAs and a consequent balanced surface expression of the heterodimer

    Retinal Angiogenesis Suppression through Small Molecule Activation of p53

    Get PDF
    Neovascular age-related macular degeneration is a leading cause of irreversible vision loss in the Western world. Cytokine-targeted therapies (such as anti-vascular endothelial growth factor) are effective in treating pathologic ocular angiogenesis, but have not led to a durable effect and often require indefinite treatment. Here, we show that Nutlin-3, a small molecule antagonist of the E3 ubiquitin protein ligase MDM2, inhibited angiogenesis in several model systems. We found that a functional p53 pathway was essential for Nutlin-3-mediated retinal antiangiogenesis and disruption of the p53 transcriptional network abolished the antiangiogenic activity of Nutlin-3. Nutlin-3 did not inhibit established, mature blood vessels in the adult mouse retina, suggesting that only proliferating retinal vessels are sensitive to Nutlin-3. Furthermore, Nutlin-3 inhibited angiogenesis in nonretinal models such as the hind limb ischemia model. Our work demonstrates that Nutlin-3 functions through an antiproliferative pathway with conceivable advantages over existing cytokine-targeted antiangiogenesis therapies

    Oral Delivery of a Tetrameric Tripeptide Inhibitor of VEGFR1 Suppresses Pathological Choroid Neovascularization

    No full text
    Age-related macular degeneration (AMD) is the primary cause of blindness in advanced countries. Repeated intravitreal delivery of anti-vascular endothelial growth factor (VEGF) agents has represented an important advancement for the therapy of wet AMD with significative results in terms of blindness prevention and partial vision restore. Nonetheless, some patients are not responsive or do not attain significant visual improvement, intravitreal injection may cause serious complications and important side effects have been reported for the prolonged block of VEGF-A. In order to evaluate new anti-angiogenic strategies, we focused our attention on VEGF receptor 1 (VEGFR1) developing a specific VEGFR-1 antagonist, a tetrameric tripeptide named inhibitor of VEGFR 1 (iVR1). We have evaluated its anti-angiogenic activity in the preclinical model of AMD, the laser-induced choroid neovascularization (CNV). iVR1 is able to potently inhibit CNV when delivered by intravitreal injection. Surprisingly, it is able to significantly reduce CNV also when delivered by gavage. Our data show that the specific block of VEGFR1 in vivo represents a valid alternative to the block of VEGF-A and that the inhibition of the pathological neovascularization at ocular level is also possible by systemic delivery of compounds not targeting VEGF-A

    Prolyl 3-Hydroxylase 2 Is a Molecular Player of Angiogenesis

    No full text
    Prolyl 3-hydroxylase 2 (P3H2) catalyzes the post-translational formation of 3-hydroxyproline on collagens, mainly on type IV. Its activity has never been directly associated to angiogenesis. Here, we identified P3H2 gene through a deep-sequencing transcriptome analysis of human umbilical vein endothelial cells (HUVECs) stimulated with vascular endothelial growth factor A (VEGF-A). Differently from many previous studies we carried out the stimulation not on starved HUVECs, but on cells grown to maintain the best condition for their in vitro survival and propagation. We showed that P3H2 is induced by VEGF-A in two primary human endothelial cell lines and that its transcription is modulated by VEGF-A/VEGF receptor 2 (VEGFR-2) signaling pathway through p38 mitogen-activated protein kinase (MAPK). Then, we demonstrated that P3H2, through its activity on type IV Collagen, is essential for angiogenesis properties of endothelial cells in vitro by performing experiments of gain- and loss-of-function. Immunofluorescence studies showed that the overexpression of P3H2 induced a more condensed status of Collagen IV, accompanied by an alignment of the cells along the Collagen IV bundles, so towards an evident pro-angiogenic status. Finally, we found that P3H2 knockdown prevents pathological angiogenesis in vivo, in the model of laser-induced choroid neovascularization. Together these findings reveal that P3H2 is a new molecular player involved in new vessels formation and could be considered as a potential target for anti-angiogenesis therapy

    An integrated approach based on multiplexed protein array and iTRAQ labeling for in-depth identification of pathways associated to IVF outcome

    Get PDF
    The emergence of high-throughput protein quantification methodologies has enabled the comprehensive characterization by longitudinal and cross-sectional studies of biological fluids under physiological and pathological conditions. In particular, the simultaneous investigation of cytokines and growth factors signaling pathways and their associated downstream effectors by integrated multiplexed approaches offers a powerful strategy to gain insights into biological networks and processes in living systems. A growing body of research indicates that bioactive molecules of human reproductive fluids, including human follicular fluid (hFF), may affect oocyte quality, fertilization and embryo development, thus potentially influencing the physiopathology of pregnancy-related conditions. In this work, an iTRAQ labeling strategy has been complemented with a multiplexed protein array approach to analyze hFFs with the aim to investigate biological processes and pathways related to in vitro fertilization (IVF) outcome. The iTRAQ labeling strategy lead to the quantification of 89 proteins, 30 of which were differentially expressed in hFFs with successful compared to unsuccessful IVF outcome. The targeted study, based on multiplexed antibody protein arrays, allowed the simultaneous quantification of 27 low abundance proteins, including growth factors, chemokines and cytokines endowed with pro- and anti-inflammatory activity. A significant number of differentially regulated proteins were involved in biological functions related to blood coagulation, acute phase response signaling and complement system. Overall, the present results provide an integrated overview of protein changes in hFFs associated to IVF outcome, thus improving current knowledge in reproductive medicine and fertility research

    Identification of Inquilinus limosus in Cystic Fibrosis: a first report in Italy

    No full text
    Cystic fibrosis is a genetic disorder associated with a polymicrobial lung infection where classical pathogens and newly identified bacteria may interact. Inquilinus limosus is an a-proteobacterium recently isolated in the airways of cystic fibrosis patient. We report the first case in Italy of I.limosus isolation from the sputum sample of a cystic fibrosis patient. The patient is a 20-years-old man with cystic fibrosis, regularly attending the Regional Care Center for Cystic Fibrosis at the Federico II University Hospital of Naples. Microbiological culture methods detected a mucoid gram negative bacillus in the patient???s sputum sample. The isolate exhibited a distinct antimicrobial susceptibility profile with a high MIC for several drugs. The MALDI-TOF mass spectrometry analysis indicated the bacterium isolated as I. limosus, confirmed by 16s rDNA sequence analysis. The described clinical case demonstrates how the bacterial biodiversity in the airways of cystic fibrosis patients is still underestimated. Cystic fibrosis lung represents an ecological niche suitable for growth of a wide variety of unusual bacteria not commonly associated with human diseases, such as I. limosus. Therefore further studies are needed to evaluate the epidemiology and clinical implications of I. limosus in the physiopathology of cystic fibrosis lung infection

    A targeted secretome profiling by multiplexed immunoassay revealed that secreted Chemokine Ligand 2 (MCP-1/CCL2) affects neural differentiation in mesencephalic neural progenitor cells

    No full text
    Chemokines and cytokines, primarily known for their roles in the immune and inflammatory response, have also been identified as key components of the neurogenic niche where they are involved in the modulation of neural stem cell proliferation and differentiation. However, a complete understanding of the functional role played in neural differentiation and a comprehensive profiling of these secreted molecules are lacking. By exploiting the multiplexing capability of magnetic bead-based immunoassays, we have investigated the changes of the expression levels of a set of chemokines and cytokines released from the pluripotent neural cell line mes-c-myc A1 following its differentiation from a proliferating phenotype (A1P) toward a neural (A1D) phenotype. We found a subset of molecules exclusively released from A1P, whereas others were differentially detected in A1P and A1D conditioned media. Among them, we identified monocyte chemoattractant protein-1/chemokine ligand 2 (MCP-1/CCL2) as a proneurogenic factor able to affect neuronal differentiation of A1 cells as well as of neuroblasts from primary cultures and to induce the elongation and/or formation of neuritic processes. Altogether, data are suggestive of a main role played by the CCL2/CCR2 signaling pathway and in general of the network of secreted cytokines/chemokines in the differentiation of neural progenitor cells toward a neural fate

    Estrogens and Progesterone Promote Persistent CCND1 Gene Activation during G(1) by Inducing Transcriptional Derepression via c-Jun/c-Fos/Estrogen Receptor (Progesterone Receptor) Complex Assembly to a Distal Regulatory Element and Recruitment of Cyclin D1 to Its Own Gene Promoter

    No full text
    Transcriptional activation of the cyclin D1 gene (CCND1) plays a pivotal role in G(1)-phase progression, which is thereby controlled by multiple regulatory factors, including nuclear receptors (NRs). Appropriate CCND1 gene activity is essential for normal development and physiology of the mammary gland, where it is regulated by ovarian steroids through a mechanism(s) that is not fully elucidated. We report here that CCND1 promoter activation by estrogens in human breast cancer cells is mediated by recruitment of a c-Jun/c-Fos/estrogen receptor α complex to the tetradecanoyl phorbol acetate-responsive element of the gene, together with Oct-1 to a site immediately adjacent. This process coincides with the release from the same DNA region of a transcriptional repressor complex including Yin-Yang 1 (YY1) and histone deacetylase 1 and is sufficient to induce the assembly of the basal transcription machinery on the promoter and to lead to initial cyclin D1 accumulation in the cell. Later on in estrogen stimulation, the cyclin D1/Cdk4 holoenzyme associates with the CCND1 promoter, where E2F and pRb can also be found, contributing to the long-lasting gene enhancement required to drive G(1)-phase completion. Interestingly, progesterone triggers similar regulatory events through its own NRs, suggesting that the gene regulation cascade described here represents a crossroad for the transcriptional control of G(1)-phase progression by different classes of NRs

    Bar chart of the enriched biological functions of differentially expressed proteins in pFF+ versus pFF- samples.

    No full text
    <p>The assessment of significantly enriched biological functions for differentially expressed proteins was performed by IPA software. p-values and the number (#) of molecules mapped on the enriched categories are reported. </p
    corecore