611 research outputs found

    Theory of intermittency applied to classical pathological cases

    Get PDF
    The classical theory of intermittency developed for return maps assumes uniform density of points reinjected from the chaotic to laminar region. Though it works fine in some model systems, there exist a number of so-called pathological cases characterized by a significant deviation of main characteristics from the values predicted on the basis of the uniform distribution. Recently, we reported on how the reinjection probability density (RPD) can be generalized. Here, we extend this methodology and apply it to different dynamical systems exhibiting anomalous type-II and type-III intermittencies. Estimation of the universal RPD is based on fitting a linear function to experimental data and requires no a priori knowledge on the dynamical model behind. We provide special fitting procedure that enables robust estimation of the RPD from relatively short data sets (dozens of points). Thus, the method is applicable for a wide variety of data sets including numerical simulations and real-life experiments. Estimated RPD enables analytic evaluation of the length of the laminar phase of intermittent behaviors. We show that the method copes well with dynamical systems exhibiting significantly different statistics reported in the literature. We also derive and classify characteristic relations between the mean laminar length and main controlling parameter in perfect agreement with data provided by numerical simulation

    Tribological Properties of High-Speed Uniform Femtosecond Laser Patterning on Stainless Steel

    Get PDF
    In this work, an analysis of the tribological performance of laser-induced periodic surface structures (LIPSS) treated X5CrNi1810 stainless steel was conducted. The approach followed by authors was to generate LIPSS-patterned circular tracks, composed of radial straight grooves with uniform angular periodicity. This permitted to measure the tribological properties in a pin-on-flat configuration, keeping fixed the orientation between the grooves and the sliding direction. A Stribeck curve was measured, as well as the consequent wear. A deep analysis of the sub-surface conditions after LIPSS generation was moreover performed using Focused Ion Beam (FIB) cross-section

    Influence of size, shape and core\u2013shell interface on surface plasmon resonance in Ag and Ag@MgO nanoparticle films deposited on Si/SiOx

    Get PDF
    Ag and Ag@MgO core-shell nanoparticles (NPs) with a diameter of d = 3-10 nm were obtained by physical synthesis methods and deposited on Si with its native ultrathin oxide layer SiOx (Si/SiOx). Scanning electron microscopy and transmission electron microscopy (TEM) images of bare Ag NPs revealed the presence of small NP aggregates caused by diffusion on the surface and agglomeration. Atomic resolution TEM gave evidence of the presence of crystalline multidomains in the NPs, which were due to aggregation and multitwinning occurring during NP growth in the nanocluster source. Co-deposition of Ag NPs and Mg atoms in an oxygen atmosphere gave rise to formation of a MgO shell matrix surrounding the Ag NPs. The behaviour of the surface plasmon resonance (SPR) excitation in surface differential reflectivity (SDR) spectra with p-polarised light was investigated for bare Ag and Ag@MgO NPs. It was shown that the presence of MgO around the Ag NPs caused a red shift of the plasmon excitation, and served preserve its existence after prolonged (five months) exposure to air, realizing the possibility of technological applications in plasmonic devices. The Ag NP and Ag@MgO NP film features in the SDR spectra could be reproduced by classical electrodynamics simulations by treating the NP-containing layer as an effective Maxwell Garnett medium. The simulations gave results in agreement with the experiments when accounting for the experimentally observed aggregation

    Influence of Edaphic and Phytosociological Attributes on Semideciduous Remnants Vegetation

    Get PDF
    Abstract Atlantic forest biome in Brazil has high biodiversity that is threated due to fragmentation and its remnants retain important residual flora that should be preserved. Studies of environmental conditions that influence species occurrence in those areas are very important to preserve them. This study characterized two remnants vegetation in the Biological Reserve, Pindorama-SP, Brazil, classified as seasonal semideciduous forest sampled in 65 plots of 400 m 2 , using soil attributes and vegetation data. Soil attributes altitude, basal area, height and number of trees with diameter at breast height (DBH) ≥ 5 cm were evaluated in the plots and non-arboreous species infestation was evaluated in a randomly drawn quadrant of 100 m 2 . The hierarchical clustering, based on soil attributes, separated plots in two major groups and five subgroups of similarity used to characterize the vegetation and the species diversity, by the Shannon Index (H') and the Pielou Equitability Coefficient (J). Soil attributes influenced endemic trees and non-arborous vegetation showing that preservation of native vegetation should consider these species relationships. Plots with higher clay percentage and higher fertility had higher infestation of non-arboreous plants as bamboo, lianas and different grasses species and had lower species diversity, basal area and height of tree species

    Anisotropic Rheology and Friction of Suspended Graphene

    Full text link
    Graphene is a powerful membrane prototype for both applications and fundamental research. Rheological phenomena including indentation, twisting, and wrinkling in deposited and suspended graphene are actively investigated to unravel the mechanical laws at the nanoscale. Most studies focused on isotropic set-ups, while realistic graphene membranes are often subject to strongly anisotropic constraints, with important consequences for the rheology, strain, indentation, and friction in engineering conditions

    Contraction, cation oxidation state and size effects in cerium oxide nanoparticles

    Get PDF
    An accurate description of the structural and chemical modifications of cerium oxide nanoparticles (NPs) is mandatory for understanding their functionality in applications. In this work we investigate the relation between local atomic structure, oxidation state, defectivity and size in cerium oxide NPs with variable diameter below 10 nm, using x-ray absorption fine structure analysis in the near and extended energy range. The NPs are prepared by physical methods under controlled conditions and analyzed in morphology and crystalline quality by high resolution transmission electron microscopy. We resolve here an important question on the local structure of cerium oxide NPs: we demonstrate a progressive contraction in the Ce-O interatomic distance with decreasing NP diameter and we relate the observed effect to the reduced dimensionality. The contraction is not significantly modified by inducing a 4%-6% higher Ce3+ concentration through thermal annealing in high vacuum. The consequences of the observed average cation-anion distance contraction on the properties of the NPs are discussed
    corecore