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The classical theory of intermittency developed for return maps assumes uniform density of points

reinjected from the chaotic to laminar region. Though it works fine in some model systems, there

exist a number of so-called pathological cases characterized by a significant deviation of main

characteristics from the values predicted on the basis of the uniform distribution. Recently, we

reported on how the reinjection probability density (RPD) can be generalized. Here, we extend this

methodology and apply it to different dynamical systems exhibiting anomalous type-II and type-III

intermittencies. Estimation of the universal RPD is based on fitting a linear function to experimental

data and requires no a priori knowledge on the dynamical model behind. We provide special fitting

procedure that enables robust estimation of the RPD from relatively short data sets (dozens of

points). Thus, the method is applicable for a wide variety of data sets including numerical

simulations and real-life experiments. Estimated RPD enables analytic evaluation of the length of

the laminar phase of intermittent behaviors. We show that the method copes well with dynamical

systems exhibiting significantly different statistics reported in the literature. We also derive and

classify characteristic relations between the mean laminar length and main controlling parameter in

perfect agreement with data provided by numerical simulations. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4813857]

Intermittency is a particular route to the deterministic

chaos characterized by spontaneous transitions between

laminar and chaotic dynamics. It is observed in a variety

of different dynamical systems in Physics, Neuroscience,

and Economics. Frequently, there is no feasible mathe-

matical model for the process under study. Then reliable

quantification of main characteristics of the intermittent

process (e.g., the length of laminar phase) from experi-

mental data is a challenging problem. The classical

theory of intermittency has significant pitfalls. Though it

works fine in some model systems, there exist a number

of so-called pathological cases that deviate significantly

from the classical predictions. In this work, we address

the problem of unification of anomalous and standard

intermittencies under single framework. The unified

model can be fitted to experimental or numerical data.

We note that to accomplish this step no a priori knowl-

edge is required. We propose a procedure that can cope

with reduced data sets consisting of several dozens of

points. This makes our methodology useful for real-life

applications. Using the experimentally obtained meas-

ures, we can classify intermittent processes into different

theoretical types. We thoroughly test our method on two

particular but canonical cases of intermittency.

I. INTRODUCTION

Intermittency is a particular route to the deterministic

chaos characterized by spontaneous transitions between lam-

inar and chaotic dynamics. For the first time, this concept

has been introduced by Pomeau and Maneville in the context

of the Lorenz system.1,2 Later, intermittency has been found

in a variety of different systems including, for example, peri-

odically forced nonlinear oscillators, Rayleigh-B�enard con-

vection, derivative nonlinear Schr€odinger equation, and in

development of turbulence in hydrodynamics (see, e.g.,

Refs. 3–5). Proper qualitative and quantitative characteriza-

tions of intermittency based on experimental data are espe-

cially useful for studying problems with partial or complete

lack of knowledge on exact governing equations, as it fre-

quently happens, e.g., in Economics, Biology, and Medicine

(see, e.g., Refs. 6 and 7). In this case, special attention has to

be paid to the length of data sets required for robust estima-

tion of the model parameters.

All cases of intermittency have been classified in three

types called I, II, and III.1,2,8 The local laminar dynamics of

type-I intermittency evolves in a narrow channel, whereas

the laminar behavior of type-II and type-III intermittencies

develops around a fixed point of generalized Poincare maps

xnþ1 ¼ ð1þ eÞxn þ ax3
n Type-II; (1)

xnþ1 ¼ �ð1þ eÞxn � ax3
n Type-III; (2)

where a > 0 accounts for the weight of the nonlinear compo-

nent and e is a controlling parameter (jej � 1). For e � 0, the
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fixed point x0 ¼ 0 becomes unstable, and hence trajectories

slowly escape from the origin preserving and reversing ori-

entation for type-II and type-III intermittencies, respectively.

Another characteristic attribute of intermittency is the

global reinjection mechanism that maps trajectories of the

system from chaotic region back into local laminar phase.

This mechanism can be described by the corresponding rein-

jection probability density (RPD), which is determined by

the chaotic dynamics of the system. Analytical expressions

for RPD are available for a few problems only, hence to

describe main statistical properties of intermittency different

approximations have been employed. The most common

approach uses the uniform RPD, which, however, works fine

in a few model cases only.9–11 Another approach deals with

the other limit, d-function like RPD. It considers reinjection

into a given point in the presence of noise.12–14 Nevertheless,

there exists a number of so-called pathological cases where

these approaches fail to explain the behavior of dynamical

systems.

Recently, to describe the reinjection mechanism of a

wide class of dynamical systems exhibiting intermittency,

we introduced a generalized RPD, a parametric power law

function depending on a free parameter m 2 ð0; 1Þ. The gen-

eralized RPD includes the uniform reinjection as a particular

case m ¼ 1=2.15,16 We showed that the shape of the general-

ized RPD is determined by the behavior of trajectories within

chaotic regime in a vicinity of a point in the Poincare map

with infinite or zero tangent. Later it has been shown that

this mechanism is robust against the external noise.17

In this work, we further develop this approach and apply

it to pathological cases of intermittency described in the liter-

ature.18,19 We show that all these cases can be now included

in the general theoretical framework. In the anomalous cases

described by Laugesen and colleagues,18 the reinjection

strongly compresses trajectories in such a way that the RPD

becomes similar to d-function. In spite of this, we show that

our approach still accurately describes the intermittent behav-

ior. This case corresponds to the parameter values of m close

to zero, but finite. The other important case, so-called

Pikovsky’s intermittency,19 belongs to the opposite limit,

when m approaches one. We also discuss a special case of the

Pikovsky’s intermittency characterized by two overlapping

RPDs. Thus, adjusting single parameter m, our approach cov-

ers all known cases of intermittency from the Laugesen to

Pikovsky through the standard one. We also show that the

standard least squares estimation of m from experimental

data introduces bias for short data sets. Then we provide a

modified fitting method that deals successfully with short

data sets, even when the number of available points is about

of several dozens. This makes the method applicable for anal-

ysis of empirical data in different fields of science.

II. ASSESSMENT OF RPD FUNCTION

First, let us briefly describe the theoretical framework

that accounts for a wide class of dynamical systems exhibit-

ing intermittency. We consider a general 1D map

xnþ1 ¼ FðxnÞ; F : R! R; (3)

which exhibits intermittency. The RPD function, denoted

here by /ðxÞ, determines the statistical distribution of trajec-

tories leaving chaotic region. It depends on the particular

shape of F(x) and there is no direct clue on how to derive

robustly /ðxÞ from experimental or numerical data, espe-

cially if only a small data set is available.

A. Fitting linear model to experimental data

Earlier we have shown that the key point to solve the

problem of model-fitting is to introduce the following inte-

gral characteristic:

MðxÞ ¼

ðx

xs

s /ðsÞ dsðx

xs

/ðsÞ ds
if

ðx

xs

/ðsÞds 6¼ 0

0 otherwise;

8>>>>><
>>>>>:

(4)

where xs is some “starting” point. Setting a constant c > 0

that limits the laminar region we define the domain of M,

i.e., M : ½x0 � c; x0 þ c� ! R, where x0 is the fixed point of

(3) that defines the laminar phase of intermittency. In the

previous works15,16 to define the starting point, we used

xs ¼ x0. Here, we generalize our approach and set

xs ¼ x06c: (5)

This enables unified analytical expression for RPD including

the case of reinjection to both sides of x0. Since the deriva-

tions are similar for both signs in Eq. (5), below for the sake

of simplicity we shall assume that xs ¼ x0 � c (but see

Sec. V A).

As M(x) is an integral characteristic, its numerical esti-

mation is more robust than direct evaluation of /ðxÞ. This

allows reducing statistical fluctuations even for a relatively

small data set or data with high level of noise. To approxi-

mate numerically M(x), we notice that it is an average over

reinjection points in the interval ðxs; xÞ, hence we can write

MðxÞ � Mj �
1

j

Xj

k¼1

xk; xj�1 < x � xj; (6)

where the data set (N reinjection points) fxjgN
j¼1 has been

previously ordered, i.e., xj � xjþ1.

For a wide class of maps exhibiting type-II or type-III

intermittency M(x) follows linear law:

MðxÞ ¼
mðx� x̂Þ þ x̂ if x 	 x̂

0 otherwise;

�
(7)

where m 2 ð0; 1Þ is a free parameter and x̂ is the lower

boundary of reinjections, i.e., x̂ ¼ inffxjg. Then using (4),

we obtain the corresponding RPD

/ðxÞ ¼ bðaÞðx� x̂Þa; with a ¼ 2m� 1

1� m
; (8)

where bðaÞ is a constant chosen to satisfy
Ð1
�1 /ðxÞ dx ¼ 1.

For m ¼ 1=2, we recover the most common approach with
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uniform RPD, i.e., /ðxÞ ¼ cnst, widely considered in the lit-

erature. The RPD (8) has two limit cases

/0ðxÞ ¼ lim
m!0

/ðxÞ ¼ dðx� x̂Þ; (9)

/1ðxÞ ¼ lim
m!1

/ðxÞ ¼ dðx� cÞ (10)

(note that bðaÞ ! 0 in these cases). In Sections IV and V, we

shall show that the pathological cases of intermittency are

close to either of these limits.

B. How to deal with short data sets

As we shall illustrate below (see Sec. V B), Eq. (6) for

relatively big data sets (thousands of points) provides faithful

description of the RPD. However, for small data sets (usually

available in experiments), it may lead to a bias in estimation

of the parameters. Ordinary least squares fitting using Eqs.

(6) and (7) tends to underestimate the value of m.

Let fxjgN
j¼1 be an available properly ordered (say,

xj 	 xjþ1) data set consisting of several dozens or hundreds

of experimental points. Assuming that the exact values mexc

and x̂exc are known, we can evaluate the error provided by

(6) and (7)

�1 ¼ ð1� mexcÞðx̂exc � x1Þ

�j � MðxjÞ �Mj ¼ �1 þ
Xj�1

k¼1

k

j
� mexc

� �
ðxk � xkþ1Þ:

j ¼ 2; 3;…;N:

(11)

We note that the straight line (7) intersects the bisector line

in the point ðx̂exc;Mðx̂excÞÞ. Thus, �1 quantifies the deviation

of the first data point from this value. Since x1 � x̂exc for

any data set, the error at the first data point is always

non-negative, �1 	 0, which leads to a systematic error.

Moreover, �1 propagates to the other errors, which causes

significant bias in the least squares fitting of small data sets.

Since �1 / ðx̂exc � x1Þ, to reduce the effect of �1, the data

set must have a point close to x̂exc. This is usually the case for

intermittencies with 0 < m < 1=2, because then

limx!x̂exc
/ðxÞ ¼ 1, i.e., the probability to find x1 � xexc is

high enough. For example, the Laugesen intermittency

(Sec. IV) fulfills this requirement. The worst scenario with a

strong bias corresponds to m > 2=3. Then according to (8),

/ðx̂excÞ ¼ 0 and /0ðx̂excÞ ¼ 0, which leads to extremely low

probability to have x1 � x̂exc in short data sets. In this case, we

expect a relatively large distance between x̂exc and x1. The

Pikovsky’s intermittency is an example of such a case (Sec. V).

In fact, it is even worst since it also has /00ðx̂excÞ ¼ 0. Thus,

only for N !1 (several thousands of points in numerical sim-

ulations) the bias disappears for the Pikovsky’s map.

In view of the above mentioned, we modify the fitting

procedure. The main idea on how to reduce the bias is to intro-

duce an “extra point,” z, to the data. This extra point satisfies

z > x1. Then we adjust its location in such a way that the

newly obtained values of Mj would not have significant bias.

Before proceed, we introduce the following notation.

Given two vectors u; v 2 RN , we define their mean and

covariance

�u ¼ 1

N

XN

j¼1

uj; Suv ¼
1

N

XN

j¼1

ðuj � �uÞðvj � �vÞ; (12)

then Suu and Svv are the variances of u and v, respectively.

Let us now introduce three vectors w; h; y 2 RN

wj ¼
1

jþ 1
; hj ¼ jMjwj; yj ¼ hj þ zwj; (13)

where Mj are provided by Eq. (6) applied over the data set

fxjgN
j¼1. The vectors w, h, and y define weights, weighted val-

ues of Mj, and ordinates of new data points, respectively.

Then we can apply the standard least squares fitting to

fðxj; yjðzÞÞgN
j¼1, which gives (y ¼ mxþ p)

mðzÞ ¼ Sxy

Sxx
; pðzÞ ¼ �y � �x

Sxy

Sxx
: (14)

Simple but tedious calculations provide the variance of

residuals

SrrðzÞ ¼ Swwz2 þ 2Swhzþ Shh �
ðSxh þ zSxwÞ2

Sxx
: (15)

We then select z by minimizing SrrðzÞ

z ¼ SxhSxw � SwhSxx

SxxSww � S2
xw

: (16)

Finally, we estimate the optimal value of m by

mopt ¼
Sxh þ zSxw

Sxx
; (17)

where z is given by (16). As we shall illustrate below

(Sec. V B) the model-fitting (17) has no bias for relatively

short data sets in the worst case of the Pikovsky’s intermit-

tency and hence can be used for processing experimental data.

III. LENGTH OF LAMINAR PHASE

Using /ðxÞ, we can derive the fundamental characteris-

tic of intermittency, the probability density of the length of

laminar phase. Following Ref. 16, we introduce a continuous

function cðxnÞ ¼ x2
n and approximate the dynamics of the

laminar phase by

dc
dl
¼ 2cðeþ acÞ; (18)

where l approximates the number of iterations in the laminar

region, i.e., the length of the laminar phase. Solving (18) for

l, we get

l ¼ 1

2e
ln

c2ðeþ acÞ
cðeþ ac2Þ

 !
: (19)

Since c in (19) is a random variable described by the RPD,

the statistics of l is also governed by the global properties

of /ðxÞ.
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Let wðlÞ be the probability density function of l, then it

can be obtained by

wðlÞ ¼ 2/ðXðlÞÞ dXðlÞ
dl

����
����; (20)

where

XðlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e
ðaþ e=c2Þe2e l � a

r
(21)

is the inverse function of (19). Thus, the probability density

function (pdf) of the length of the laminar phase is given by

wðlÞ ¼ /ðXðlÞÞXðlÞ½eþ aX2ðlÞ�: (22)

Using (22), we can determine the mean value of l

�l ¼
ð1

0

swðsÞ ds (23)

and hence estimate the critical exponent, b, of the character-

istic relation

�l / 1

eb
(24)

that describes, for small values of e, how fast the length of

the laminar phase grows while e decreases. The critical expo-

nent b depends on the parameters of M(x): m and x̂. We sepa-

rate the following cases:

• Case A: x̂ ¼ x0

A1: m 2 ð0; 2=3Þ. Equations (22) and (23) give

b ¼ 2� 3m

2� 2m
: (25)

Particularly, limm!0 b ¼ 1 and limm!2=3 b ¼ 0.

A2: m 2 ½2=3; 1Þ. Equations (22) and (23) give

b ¼ 0: (26)

• Case B: x̂ > x0. There is an upper cut-off for l and in the

limit e! 0 the value �l practically does not change, hence

b ¼ 0: (27)

• Case C: x̂ < x0.

b ¼ 1

2
; (28)

as in the uniform reinjection.

As we shall show below, in certain situations, the

described limit values of b cannot be attained numerically

because it requires prohibitively small values of e.
Particularly, in the case C if x̂ � x0, the characteristic relation

matches the case A (x̂ ¼ x0) for small enough values of e.

IV. LAUGESEN TYPE-III INTERMITTENCY

In this section, we apply the theoretical results presented

above to the map (3) with

FðxÞ ¼ �xð1þ eþ x2Þe�dx2

: (29)

This dynamical system exhibits type-III intermittency and

the pdf of the laminar length deviates significantly from

the prediction made by the classical theory. Laugesen and

colleagues18 argued that the observed deviation is due to

strongly nonuniform reinjection.

As we mentioned above, in general, the RPD is deter-

mined by the behavior of trajectories within chaotic regime

in a vicinity of a point of the Poincare map with infinite or

zero tangent.15,16 Let us now show how it works in this

particular case. The map (3), (29) has single unstable (e > 0)

fixed point at x0 ¼ 0. The behavior of trajectories (with

direction reversing) near x0 defines the laminar phase of

intermittency. Figure 1 illustrates the reinjection process

from the chaotic region around the maximum of F(x) (zero

tangent point) into the laminar region. The relative thickness

of the arrows reflects the width of a bunch of trajectories.

Note that the map produces strong compression of the rein-

jected trajectories, which suggests significantly nonuniform

shape of /ðxÞ. Moreover, the reinjection point nearest to

the origin is given by x̂ ¼ F2ðxmÞ� 0. Thus, there is a gap

around the origin x 2 ð�x̂; x̂Þ that receives no reinjection.

We notice that the described reinjection mechanism dif-

fers from those proposed in Ref. 16 based on expansion of

trajectories around the maximum of F(x). Indeed, here the

function F(x) has vanishing tangent for jxj 
 1, and points

around its maximum are mapped into a small region in the

laminar zone (Fig. 1). In spite of this, as we shall show in

Subsection IV A our theory is still applicable in this patho-

logical case.

A. Estimation of RPD

To estimate the function M(x), we numerically iterated

the map (3), (29), and then evaluated (6). Due to symmetry

FIG. 1. Sketch of the map (3), (29) exhibiting anomalous type-III intermit-

tency. Thick arrow illustrates mapping of points from the chaotic region

(around the maximum of F(x)) into the region with practically zero tangent

of F(x). Then thin arrow indicates the following reinjection of these points

into the laminar region.
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of the map, we considered only reinjected points coming

from one side of the map. As expected the data obtained fit

well to the linear law (Fig. 2(a)). Thus, we can conclude that

the power law (8) generated by trajectories passing around

the maximum and minimum of F(x) is robust against strong

compression in the reinjection mechanism.

Least squares fit of the numerical data gives m ¼ 0:0927

and x̂ ¼ 0:9� 10�3. As expected, the slope differs signifi-

cantly from m ¼ 1=2 corresponding to the classical uniform

RPD (Fig. 2(a), dashed black line). Substituting the found

value into (8), we determine the exponent a ¼ �0:898. We

note that the analytical value for the lower boundary of rein-

jections x̂ ¼ F2ðxmÞ � 10�4 is close enough to the value

found experimentally. In this work, we shall use the experi-

mental value x̂ instead of the theoretical one to stress the fact

that the exact shape of F(x) and the exact value x̂ are not nec-

essary to obtain faithful description of all statistic properties

of intermittency.

To crosscheck the obtained results, we plotted numeri-

cal data and predicted shape of /ðxÞ (Fig. 2(b)). Visual

inspection confirms good agreement between the numerical

data and the analytical expression. We note that for zero-

tangent nonlinearity and strong compression of the rein-

jected trajectories (Fig. 1) the RPD shown in Fig. 2(b) is

closed to the limit /0 ¼ dðx� x̂Þ as we expected for m! 0

(see Eq. (9)).

B. Length of laminar phase

Earlier two separate analytical arguments to estimate the

behavior of wðlÞ in opposite limits (l! 0 and l! l̂) have

been proposed.18 We note that our approach provides

approximation of wðlÞ in a single shot (see Eq. (22)). Indeed,

using the found RPD (Figs. 2(a) and 2(b)) we can easily

evaluate the pdf for the length of the laminar phase in good

agreement with experimental data (Fig. 2(c)).

Since x̂ > x0 ¼ 0, according to our classification we are

in the case B and there exists an upper cut-off for l. The cut-

off length, l̂, is given by

Xðl̂Þ ¼ x̂:

Hence as l! l̂ the pdf /ðXðlÞÞ grows to infinity (a < 0) and

in accordance with (22) w!1. It is worth noting that the

presence of a cut-off is not a sufficient condition for

unbounded growth of w as l ! l̂. Besides, it is also neces-

sary that m 2 ð0; 1=2Þ. In Sec. V, we shall show a

counterexample.

The cut-off value l̂ increases as e decreases. In the limit,

l̂0 ¼ lim
e!0

l̂ðeÞ ¼ 1

2a

1

x̂2
� 1

c2

� �
; (30)

which also corresponds to the characteristic exponent b ¼ 0

(see also Ref. 16). For d ¼ 0:1, Eq. (30) gives l̂ � 1012,

hence for the values of e used in Fig. 2(c) we have �l � l̂.
Since x̂ � 0 the case A1 (x̂ ¼ 0) can provide reasonable

approximation for the characteristic exponent b. Any decre-

ment of e must increase the average laminar length �l up to

the asymptotic limit. To confirm this, we performed simula-

tions decreasing e (Fig. 3, circles). Indeed, in a wide range of

e (up to 10�7) the laminar length is governed by the charac-

teristic exponent given by (25).

However, if we slightly increase the parameter

d ¼ 0:13, making x̂ bigger than before, then the same calcu-

lation gives l̂ � 104, and hence �l must rapidly saturate, and

then the critical exponent attains the value b ¼ 0 as expected

in the case B (see Eq. (27)). Our numerical simulations con-

firm such behavior of �l (Fig. 3, triangles).

V. PIKOVSKY INTERMITTENCY

Another classical example of nonstandard intermittency

can be observed in the Pikovsky’s map

xnþ1 ¼ f ðxnÞ ¼
GðxnÞ xn 	 0

�Gð�xnÞ xn < 0;

�
(31)

FIG. 2. Analysis of the anomalous Laugesen type-III intermittency (map (3), (29): d ¼ 0:1; e ¼ 0:005, and the laminar interval ½�1; 1�). (a) Assessment of the

RPD by numerical simulation. Dots correspond to M(x) evaluated by (6) and dashed line corresponds to the least squares fit. The dashed line with slope m ¼
0:5 corresponds to the uniform RPD. (b) Numerical RPD. Dashed curve corresponds to (8) with the parameters found in (a). (c) Probability density of the

length of the laminar phase. Dashed line corresponds to (22).

FIG. 3. Characteristic relations of the averaged length of the laminar phase �l
vs e for the map (3), (29). Circles and triangles show numerical data. For

d ¼ 0:1, the solid line has slope b ¼ 0:885 in agreement (within 6% of rela-

tive error) with the analytical value 0.948 given by (25). For d ¼ 0:13, the

horizontal dashed line shows the asymptotic behavior of �l, with b! 0.

033112-5 del Rio, Elaskar, and Makarov Chaos 23, 033112 (2013)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

138.4.113.113 On: Wed, 14 May 2014 11:02:08



where GðxÞ ¼ x q þ hx� 1 ðq; h > 0Þ. The map (31) has no

fixed points and to facilitate the study of its dynamics it is

convenient to introduce the second iteration, i.e., to consider

Eq. (3) with FðxÞ ¼ f 2ðxÞ ¼ f ðf ðxÞÞ. In what follows, we

shall deal with this new map.

Figure 4 illustrates the map and an example of a trajec-

tory. Two unstable fixed points (Figs. 4(a) and 4(b), red dots)

generate two laminar regions with type-II intermittency.

Since the map is symmetrical, we shall describe the upper

fixed point only, i.e., x0 > 0. We define two reinjection inter-

vals Il ¼ ½h� c; h� and Ir ¼ ½Fð�1Þ;Fð�1Þ þ c�, where c, as

in Sec. IV, is a constant defining the extension of the laminar

region. Points are mapped into the interval Il from the branch

of F(x) with the end point at (0, h), whereas the interval Ir

receives trajectories from the branch starting at ð�1;Fð�1ÞÞ
(Figs. 4(a) and 4(b), arrows). If Fð�1Þ > h then there is a

gap between these intervals (Fig. 4(a)), whereas in the oppo-

site case the intervals overlap (Fig. 4(b)). The trajectory

shown in Fig. 4(c) corresponds to the latter case.

In the non-overlapping case, there exist two chaotic

attractors. Their basins of attraction depend on the control-

ling parameter q and, by playing with this, we can merge

them thus obtaining a single chaotic attractor. In the latter

case, trajectories can stay for a long time either in the

region jxj < x0 or in jxj > x0 and then “jump” between

these parts of the attractor (Fig. 4(c), top subplot). Laminar

phases alternate the chaotic dynamics. Figure 4(c) (bottom

subplot) shows two laminar phases near the unstable

points: one of them just alters the chaotic dynamics in

the central part of the attractor, whereas the other leads to

transition from the central to the peripheral part of the

attractor.

A. Non-overlapping case

Let us first assume that Il \ Ir ¼1 (Fig. 4(a)), then the

map has two attractors and consequently two independent

chaotic behaviors with intermittency selected by initial con-

ditions. Therefore, the integral characteristics M(x) has two

independent branches.

To evaluate M(x) we set the starting point in (4) to xr
s

¼ x0 � c and xl
s ¼ x0 þ c for the intervals Ir and Il, respec-

tively. We notice that x̂r ¼ infxj2Ir
fxjg � F2ð�xþr Þ, whereas

x̂l ¼ supxj2Il
fxjg � Fð0�Þ. Thus, to adapt the numerical

approximation (6) to the interval Il, we sort the reinjection

points in reverse order, i.e., xj 	 xjþ1.

FIG. 4. Second iteration of the map

(31) demonstrating the Pikovsky type-

II intermittency. (a) Non-overlapping

case with a gap between two reinjec-

tion intervals. Arrows show two routs

of reinjection into two disjoin intervals

Il and Ir for the upper laminar region.

Dots mark positions of the fixed points.

There are two chaotic attractors in the

map. (b) Slightly overlapping case.

Reinjection intervals Il and Ir overlap.

There exists single chaotic attractor.

(c) Time evolution of the map corre-

sponding to the case (b). Bottom sub-

plot shows zoomed trajectory with two

laminar phases near two unstable fixed

points (h ¼ 0:255; q ¼ 0:29).
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Figure 5(a) shows two branches of M(x) evaluated over

the two chaotic attractors. As expected, each branch is well

approximated by a straight line with ml ¼ 0:760; x̂l ¼ 0:252

and mr ¼ 0:723; x̂r ¼ 0:272 for the interval Il and Ir, respec-

tively. As in the previous case, we have analytical expressions

for x̂l ¼ h and x̂r ¼ hq þ h2 � 1, which provide x̂l ¼ 0:255

and x̂r ¼ 0:262, close to the experimental values. Again, as in

Sec. IV, we shall use the experimental value instead of the an-

alytical one to demonstrate that such approximation is good

enough to appropriately describe intermittency.

For both branches of M(x), the slope is significantly

higher than 0.5 due to the infinite tangent generating the

power law (8). In Fig. 4(a), this corresponds to the short

arrow indicating reinjection into the interval Il from the

region x � x0 with near infinite tangent of F(x) at x¼ 0.

Other singular point is �xr. We notice that points x � � xr

are mapped to the region near Fð�1Þ (see dashed trajectory

in Fig. 4(a)) and finally, after the second iteration they enter

in the laminar interval Ir (long arrow).

Figure 5(b) compares the RPDs evaluated by the power

law (8) using the above obtained function M(x) and numeri-

cal data. As before (see Fig. 2), the obtained pdf fits well to

the data. Since in this case ðx0 � x̂lÞ > 0 and ðx̂r � x0Þ > 0,

there is a gap that determines the corresponding cut-off

lengths l̂ l and l̂r. Therefore, the length of the laminar phase

is bounded. However, in this case, we have ml;mr > 0:5,

and hence al; ar > 0 and then wðl̂lÞ ¼ wðl̂rÞ ¼ 0. Thus, the

asymptotic behavior of the pdf at l! l̂ is opposite to the

blow up observed in Fig. 2(c). Figure 5(c) confirms this con-

clusion. Note that here, the parameters a and e used in

Eqs. (1) and (22) are given by19

a ¼ 1

6
F000ðx0Þ; e ¼ F0ðx0Þ � 1 (32)

B. Fitting short data sets

As we have seen above (Figs. 2 and 5), Eq. (6), and least

squares fitting provide faithful description of the RPD for rel-

atively big data sets (thousands of points). However, for small

data sets (usually available in experiments), it may lead to a

bias (Sec. II B). This bias can be significant especially in the

case shown in Fig. 5 because the RPD and its first and second

derivatives are equal to zero at x ¼ x̂exc. Then we expect a

large gap between x̂exc and the first point in the data set. To

illustrate this we reuse the long data set employed for the

analysis of the Pikovsky’s intermittency (Fig. 5), but now we

randomly select short portions of the data. Each data set cre-

ated this way ranges from 25 to 3200 points.

Figure 6(a) shows how the value of m estimated by

using (6) and the least squares fitting depends on the size of

data set. For data sets smaller than 1000 points, the estimated

value is consistently below the exact one. Thus, this method

tends to underestimate the value of m, which is particularly

notable for data sets consisting of dozens of points. The inset

shows a representative case of such fitting. One can observe

that data points obtained by (6) fall below the line represent-

ing the exact model (Fig. 6(a), inset, blue line).

We then implemented the modified method [Eqs. (13),

(16), and (17)] and applied it over the same data sets used

for Fig. 6(a). Figure 6(b) summarizes the results. Even with

short data sets the modified method provides acceptable

results. Small positive bias observed for sizes of 50 and 100

points can be explained by certain instability of the method

observed for particular data sets.

C. Slightly overlapping case

In the parameter region h > Fð�1Þ, the intervals Il

and Ir overlap and the map has a single chaotic attractor

FIG. 5. Analysis of the Pikovsky intermittency in the non-overlapping (top row, q ¼ 0:29; h ¼ 0:255, two chaotic attractors) and slightly overlapping (bottom

row, q ¼ 0:27; h ¼ 0:255, single chaotic attractor) cases. Results are shown for the second iteration of the map (31). (a) and (d) Numerical data (dots) for two

branches of M(x) computed using (6) for reinjections in the intervals Il and Ir. Dashed gray lines show the corresponding least mean square fits, which then

used to plot /ðxÞ and wðlÞ. Dashed line with slope m ¼ 0:5 corresponds to the uniform RPD. (b) and (e) RPDs for Il and Ir. Numerical data (dots) and pdfs

evaluated by (8) (dashed curves). (c) and (f) Probability density of the length of laminar phase for the interval Ir (for Il the pdf is similar). Dashed curve corre-

sponds to (22).
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(Figs. 4(b) and 4(c)). The analysis similar to the above

described is shown in Figs. 5(d)–5(f).

The mixed RPD is composed of partially overlapping

RPDs /lðxÞ and /rðxÞ defined on their respective reinjec-

tion intervals Il and Ir. Thus, to evaluate the integral

characteristic M(x) we separated numerically obtained

reinjection points into two subsets according with their val-

ues one iteration before the reinjection into the laminar

zone (Fig. 4(b), long and short arrows). Figure 5(d) shows

two branches of M(x) evaluated separately over two rein-

jection subsets. The linear fits give ml ¼ 0:770; x̂l ¼ 0:253

and mr ¼ 0:732, x̂r ¼ 0:251. These values substituted in (8)

define /lðxÞ and /rðxÞ. Finally the composite RPD is

given by

/ðxÞ ¼
x/lðxÞ if x � x̂r

x/lðxÞ þ ð1� xÞ/rðxÞ if x̂r < x < x̂l

ð1� xÞ/rðxÞ if x̂l � x;

8><
>: (33)

where x is the statistical weight

x ¼ Nl

Nr þ Nl
; (34)

where Nl and Nr are the numbers of reinjection points in the

intervals Il and Ir, respectively. The RPD evaluated by (33)

is in good agreement with numerical data (Fig. 5(e)).

The pdf of the laminar length (22) determined by using

(33) matches well the numerical data (Fig. 5(f)). We note

that the pdfs of the laminar phases of intermittency look sim-

ilar in the non-overlapping and overlapping cases (Fig. 5(c)

vs Fig. 5(f)). In spite of this, they differ significantly. In the

former case, there exists a cut-off length l̂ � 75 and no lami-

nar dynamics with the length above this value can be

observed experimentally. In the latter case, the probability to

find a long enough laminar phase (say, l � 75) is close to

zero but finite.

The non-overlapping case with the cut-off (Fig. 5(c))

falls into the case B. Then we have asymptotically b! 0.

On the other hand, in the overlapping region /ðx0Þ > 0 and

j/0ðx0Þj <1 (Fig. 5(e)), thus, we are in the case C and in

the limit e! 0 we get b ¼ 0:5, which corresponds to the

uniform reinjection. As in Sec. IV, we can assume x̂ � x0

and approximate the critical exponent b following the limit

given in the case A2, i.e., b � 0. Note, however, that this

approximation is worse than we had before because m is

close to one. We assume that the overlapped region is very

small, consequently /ðx0Þ � 0, whereas in Sec. IV /ðx0Þ
was unbounded. This means that the set of points reinjected

in a small vicinity of x0 has a low statistical weight and con-

sequently the limit value b ¼ 0:5 is difficult to be reached,

i.e., this asymptotic value is observed beyond the numeri-

cally accessible parameter region. This situation changes if

/ðxÞ � 0 as we shall explain in Subsection V D.

Figure 7 shows numerical data and theoretical estima-

tion. The blue curve with asymptotic behavior indicated by

the straight line labelled by a corresponds to numerical inte-

gration of (23) where we used the RPD given by (33). In the

region of numerically accessible values of e, this estimate

approximates well the numerical data.

D. Strongly overlapping case

Until now, we considered intermittency in the parameter

regions showing either a gap between two RPDs (Fig. 4(a))

or their small overlapping (Fig. 4(b)). In both cases, /ðx0Þ
was either equal or close to zero. Let us now study the

remaining case corresponding to strong overlapping of the

intervals Ir and Il.

Figure 8 shows the RPD obtained for the same parame-

ter set used in Ref. 19 (h ¼ 0:383; q ¼ 0:1), that corresponds

to a strong overlapping of the RPDs /lðxÞ and /rðxÞ. The

resulting RPD, /ðxÞ, has a parabolic shape with high enough

values in the vicinity of x0 (fixed point of the map). In this

FIG. 6. Fitting the RPD model to short data sets. (a) Mean and standard

error of least squares estimation of m averaged over 100 independent

experiments using Eq. (6). Horizontal dashed line marks the exact value of

m ¼ 0:760. The inset illustrates a representative example of least squares

fitting of 30 data points. The data and straight line underestimate the exact

value of m. (b) Mean and standard error for m estimated by using the modi-

fied scheme (17). There exists no significant bias in the estimate even for

relatively short data sets. The inset illustrates typical distributions of the

error (11) obtained for ordinary least squares using Eq. (6) (dots) and modi-

fied (triangles) methods.
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case, the overlapped region is bigger than the laminar region,

i.e., ðx0 � c; x0 þ cÞ � ðFð�1Þ; hÞ, hence from (33), we get

/ðxÞ ¼ x/lðxÞ þ ð1� xÞ/rðxÞ; (35)

where x is given by (34). Since both Fð�1Þ and h lie outside

the domain used for approximation of M(x), Eq. (6) cannot

provide estimates for x̂l and x̂r , instead it gives the limits of

the domain, i.e., x̂l � x0 � c and x̂r � x0 þ c. We notice,

however, that the values ml and mr are estimated correctly

and hence the RPD (35) accurately describes the numerical

pdf (Fig. 8).

Contrary to the case of slight overlapping discussed

above now, we have /ðx0Þ � 0 (Fig. 8). Thus, we are in the

case C of our classification (see Sec. III), hence we recover

b ¼ 0:5 even for large enough values of e (up to e � 0:5).

Consequently, all statistics are compatible with the uniform

reinjection, despite of the fact that the obtained RPD is non-

uniform. Figure 7 (strong overlap) shows the characteristic

relation between �l and e for this case. The green arrow repre-

sents the continuous transition of the characteristic relation

as the overlapped region increases from very small (blue

curve) to large values (red line).

VI. CONCLUSIONS

Pathological cases of intermittency described in the

literature are known by their significant deviation of main

characteristics (e.g., the length of laminar phase) from those

predicted by the classical theory. In this work, we have

shown that the generalized Reinjection Probability Density
provides faithful description of anomalous and standard

intermittencies in a unified framework. Such RPD, taken in

the form of a power-law function, can be fitted to experimen-

tal or numerical data. We note that to accomplish this step

no a priori knowledge is required. We have proposed a

procedure that can cope with reduced data sets consisting of

several dozens of points. This makes our methodology useful

for applications where no mathematical model of an inter-

mittent process is available. Using the experimentally

obtained values, we can classify the intermittent process

under study into different theoretical types. We demonstrated

the method on two particular but canonical cases of type-II

and type-III intermittencies.

Calculation of the RPD is based on the earlier intro-

duced integral characteristic M(x), which is a linear function

of the system governing variable x, with the slope m 2 ð0; 1Þ
that determines the type of RPD. In this work, we general-

ized the definition of M(x) to account for reinjection proc-

esses that map trajectories on both sides of a fixed point

corresponding to the laminar region. The linear law can be

easily fitted from even reduced data set. Getting the slope

close to m ¼ 0:5, we end up at the classical intermittency

with uniform RPD, whereas the limit cases (m � 0 and

m � 1) describe anomalous intermittencies published in the

literature. For the anomalous Laugesen type-III intermit-

tency, we have found the lowest value of m � 0:09 observed

up to now. This value predicts the RPD close to delta func-

tion centered at zero, i.e., /ðxÞ � dðxÞ. The second anoma-

lous case, the so-called Pikovsky’s intermittency (second

iteration of the Pikovsky’s map), corresponds to type-II

intermittency and high values of m. We got m � 0:77, which

is the biggest value found up to now. In this case, the RPD is

close to dðx� cÞ and consequently /ðxÞ� 0 in the vicinity

of small values of x, which is opposite to type-III case.

We have shown that the obtained RPDs are in good

agreement with numerical data, and hence our approach is

robust against strong length compression. Type-III intermit-

tency exhibits atypical density of the laminar length, l, which

has been accurately described by the approach.

For the Pikovsky’s intermittency, we have described

two different cases of the anomalous statistics with similar

values of m. One of them corresponds to the existence in the

phase space of two chaotic attractors, whereas the other one

has single chaotic attractor. In the map, these cases differ by

the degree of overlapping of reinjection intervals (non-over-

lapping vs slightly overlapping). The existence of two rein-

jection intervals provides two reinjection mechanisms and

two RPDs defined over each interval. Thus, to obtain them,

we separated all reinjection points into two independent sets

FIG. 8. RPD for the Pikovsky’s map in the strongly overlapping case. Dots

correspond to numerical simulations and the curve is obtained by Eq. (35)

with the fitted values for the reinjection on Il: ml ¼ 0:76 ðal ¼ 2:174Þ. The

corresponding values for Ir are mr ¼ 0:716 ðar ¼ 1:519Þ. In this case,

Nl=Nr ¼ 0:86.

FIG. 7. Characteristic relation of the average length of the laminar phase �l
vs e. Dots correspond to numerical data, whereas the curve marked as slight

overlap refers to numerical integration of Eq. (23) using (33) as RPD. The

asymptotic behavior is given by dashed line (marked by a) with the slope

�0.5 (b ¼ 0:5). The straight line (marked by b) with the slope �0.5

(b ¼ 0:5) matches the numerical data for the strongly overlapping case con-

sidered in Ref. 19.
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according with their origin just before the reinjection.

Finally, the RPDs evaluated over each data set provide the

composite RPD describing the dynamics of the system. We

have shown that the obtained RPD and the corresponding

probability density of the length of the laminar phase are in

good agreement with numerical simulations.

We have also introduced classification of different cases

of intermittency showing different critical exponents (the

mean laminar length �l / e�b) based on the parameters of

M(x). According to this classification, type-III intermittency,

depending on the parameters, can have two characteristic

exponents for numerically accessible values of the control-

ling parameter. Since there is a cut-off length l̂ even in the

limit e! 0, we get b ¼ 0 in the parameter region

logð�lÞ� logðl̂0Þ. However, if logð�lÞ � logðl̂0Þ then assum-

ing x̂ � 0 we obtained b ¼ ð2� 3mÞ=ð2� 2mÞ, in good

agreement with numerical data (b � 0:9). We note that both

cases are far from the classical value b ¼ 0:5. For the

Pikovsky’s intermittency, the characteristic exponent

depends on the level of overlapping of two reinjection inter-

vals. In the non-overlapping case, we have b ¼ 0. For slight

overlapping and x̂r < x0, this exponent should be b ¼ 0:5,

but it happens in the parameter region for which /ðxÞ � 0

and d/ðxÞ=dx � 0 in a small vicinity of x0 (since m > 2=3).

Such limit is difficult to attain due to very low number of

reinjected points there. Finally for strong overlapping we

recover the limit b ¼ 0:5 predicted by the classical theory

assuming the uniform distribution, in spite of non-uniform

RPD in this case.

In the case of RPDs with /ðx̂Þ � 0 and /0ðx̂Þ � 0,

short data sets may have relatively large gap between x̂ and

any point in the data set. We have shown that in this sce-

nario the standard least squares method produces signifi-

cant error in estimation of m. Here, we have introduced a

modified method to solve this problem. We illustrated new

method on the Pikovsky’s intermittency and showed its

applicability to data sets consisting of several dozens of

points.
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