162 research outputs found

    Bimetallic au/ag metal superstructures from macromolecular metal complexes in solid-state

    Get PDF
    IndexaciĂłn: Web of Science; Scielo.Novel bimetallic Au/Ag superstructures have been prepared from solid-state pyrolysis of the macromolecular complexes Chitosan(MLn/M'Ln)n y PSP-4-PVPx( MLn/M'Ln)n with MLn = AuCl3 and M'Ln = Ag(CF3SO3)The characterization was made from XRD (X-ray diffraction of powder), SEM and EDS analysis. Morphologies are influenced by both the nature of the polymer and the metal/polymer, molar ratio of the polymer precursor. EDS analysis suggests a core/shell Au/Ag structure for the materials. A probable mechanism of the formation of these superstructures is discussed. Although separated reports of metallic superstructures of Au or Ag have been recently described, the here reported are the first bimetallic Au/Ag. Key words: Superstructures, Macromolecular complexes, metallic Au and Ag, Pyrolysishttp://ref.scielo.org/y6jcg

    Gelation of n3p3[nh(ch2)3si(oet)3]6-n [x]n x = nh(ch2)3si(oet)3, nch3(ch2)3cn and oc6h4(ch2)cn, n = 0 or 3 at the liquid/air/interface

    Get PDF
    Indexación: ScieloThe compounds N3P3[NH(CH2)3Si(OEt)3]6 (1), N3P3[NH(CH2)3Si(OEt)3]3[NCH3(CH2)3CN]3 (2) and N3P3[NH(CH2)3Si(OEt)3]3 [HOC6H4(CH2)CN]3 (3) undergo slow gelation at the interface oil/air at low temperatures to give perfect gels G1, G2 and G3 respective ly. TEM analysis reveals nanoparticles of silica with mean size of about 10 nm. Pyrolysis under air at 800 °C of these gels affords a mixture of mainly Si5(PO4)6O, SiP2O7 and SiO2. Gelation and pyrolysis products were characterized by IR, solid-state NMR, TEM, SEM-EDAX microscopy and X-ray diffraction. The sol-gel process in the interface liquid /air is discussed in comparison with the usual sol-gel solution process.http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072010000300031&nrm=is

    SOLID STATE MORPHOLOGY AND SIZE TUNING OF NANOSTRUCTURED PLATINUM USING MACROMOLECULAR COMPLEXES

    Get PDF
    Indexación: Web of Science; Scielo.The macromolecular complexes Chitosan●(PtCl2)n and PSP-co-4-PVP●(PtCl2)n, were prepared from the respective polymer and PtCl2 in metal:polymer molar ratios 1:1 and 1:5. Pyrolisis of the macromolecular complexes Chitosan●(PtCl2)n and PSP-co-4-PVP●(PtCl2)n at 800 °C under air affords cubic nanostructured Pt in the pure phase. The morphology of the pyrolityc products depends on the molar metal:polymer ratio; i.e. a "cotton" 3D shape for the 1:1 ratio and a 'foamy" 3D shape for the 1:5 ratio. On the other hand, the particle size depends on the polymer nature, obtaining Pt nanoparticles as small as 6 nm for the chitosan precursors in both molar ratio.http://ref.scielo.org/8p5h2

    Polymer/trimer/metal complex mixtures as precursors of gold nanoparticles: tuning the morphology in the solid-state

    Get PDF
    The pyrolysis of several physical mixtures of AuCl(PPh3) with polymeric [NP(O2C12H8)]n or cyclic N3P3(O2C12H8)3 phosphazenes, formed as solid powders or films with different molar ratios, have been studied under air and at 800 °C. The characterization of the products has shown that the particle size and morphology are strongly dependent on the nature of the phosphazene, the phosphazene/AuCl(PPh3) molar ratio and on the preparation methodology. Gold nanoparticles (NPs) with mean sizes as small as 3.5 nm were obtained from a [NP(O2C12H8)]n/AuCl(PPh3) 1:1 film. The particle morphology was also strongly dependent on the experimentally conditions of the pyrolysis. Powdered materials exhibit a 3-D irregular morphology in the mixture [NP(O2C12H8)]n/AuCl(PPh3) 3:1 film, and gold foams in the 1:1 ratio, both from the [NP(O2C12H8)]n/AuCl(PPh3) as well as N3P3(O2C12H8)3/AuCl(PPh3) mixtures. These results show for the first time the possibility of controlling morphology and size of gold particles obtained by solid-state reactions

    Organometallic derivatives of cyclotriphosphazene as precursors of nanostructured metallic materials: a new solid state method

    Get PDF
    The cyclic phosphazene trimers [N3P3(OC6H5)5OC5H4N·Ti(Cp)2Cl][PF6] (3), [N3P3(OC6H4CH2CN·Ti(Cp)2Cl)6][PF6]6 (4), [N3P3(OC6H4-But)5(OC6H4CH2CN·Ti(Cp)2Cl)][PF6] (5), [N3P3(OC6H5)5C6H4CH2CN·Ru(Cp)(PPh3)2][PF6] (6), [N3P3(OC6H5)5C6H4CH2CN·Fe(Cp)(dppe)][PF6] (7) and N3P3(OC6H5)5OC5H4N·W(CO)5 (8) were prepared and characterized. As a model, the simple compounds [HOC5H5N·Ti(Cp)2Cl]PF6 (1) and [HOC6H4CH2CN·Ti(Cp)2Cl]PF6 (2) were also prepared and characterized. Pyrolysis of the organometallic cyclic trimers in air yields metallic nanostructured materials, which according to transmission and scanning electron microscopy (TEM/SEM), energy-dispersive X-ray microanalysis (EDX), and IR data, can be formulated as either a metal oxide, metal pyrophosphate or a mixture in some cases, depending on the nature and quantity of the metal, characteristics of the organic spacer and the auxiliary substituent attached to the phosphorus cycle. Atomic force microscopy (AFM) data indicate the formation of small island and striate nanostructures. A plausible formation mechanism which involves the formation of a cyclomatrix is proposed, and the pyrolysis of the organometallic cyclic phosphazene polymer as a new and general method for obtaining metallic nanostructured materials is discussed

    Layered graphitic carbon host formation during liquid-free solid state growth of metal pyrophosphates

    Get PDF
    We report a successful ligand- and liquid-free solid state route to form metal pyrophosphates within a layered graphitic carbon matrix through a single step approach involving pyrolysis of previously synthesized organometallic derivatives of a cyclotriphosphazene. In this case, we show how single crystal Mn2P2O7 can be formed on either the micro- or the nanoscale in the complete absence of solvents or solutions by an efficient combustion process using rationally designed macromolecular trimer precursors, and present evidence and a mechanism for layered graphite host formation. Using in situ Raman spectroscopy, infrared spectroscopy, X-ray diffraction, high resolution electron microscopy, thermogravimetric and differential scanning calorimetric analysis, and near-edge X-ray absorption fine structure examination, we monitor the formation process of a layered, graphitic carbon in the matrix. The identification of thermally and electrically conductive graphitic carbon host formation is important for the further development of this general ligand-free synthetic approach for inorganic nanocrystal growth in the solid state, and can be extended to form a range of transition metals pyrophosphates. For important energy storage applications, the method gives the ability to form oxide and (pyro)phosphates within a conductive, intercalation possible, graphitic carbon as host–guest composites directly on substrates for high rate Li-ion battery and emerging alternative positive electrode material

    Synthesis and characterization of cyclotriphosphazenes containing silicon as single solid-state precursors for the formation of silicon/phosphorus nanostructured materials

    Get PDF
    The synthesis and characterization of new organosilicon derivatives of N3P3Cl6, N3P3[NH(CH2)3Si(OEt)3]6 (1), N3P3[NH(CH2)3Si(OEt)3]3[NCH3(CH2)3CN]3 (2), and N3P3[NH(CH2)3Si(OEt)3]3[HOC6H4(CH2)CN]3 (3) are reported. Pyrolysis of 1, 2, and 3 in air and at several temperatures results in nanostructured materials whose composition and morphology depend on the temperature of pyrolysis and the substituents of the phosphazenes ring. The products stem from the reaction of SiO2 with P2O5, leading to either crystalline Si5(PO4)6O, SiP2O7 or an amorphous phase as the glass Si5(PO4)6O/3SiO2·2P2O5, depending on the temperature and nature of the trimer precursors. From 1 at 800 °C, core−shell microspheres of SiO2 coated with Si5(PO4)6O are obtained, while in other cases, mesoporous or dense structures are observed. Atomic force microscopy examination after deposition of the materials on monocrystalline silicon wafers evidences morphology strongly dependent on the precursors. Isolated islands of size ∌9 nm are observed from 1, whereas dense nanostructures with a mean height of 13 nm are formed from 3. Brunauer−Emmett−Teller measurements show mesoporous materials with low surface areas. The proposed growth mechanism involves the formation of cross-linking structures and of vacancies by carbonization of the organic matter, where the silicon compounds nucleate. Thus, for the first time, unique silicon nanostructured materials are obtained from cyclic phosphazenes containing silicon

    Solid-state synthesis of embedded single-crystal metal oxide and phosphate nanoparticles and in situ crystallization

    Get PDF
    A new solid state organometallic route to embedded nanoparticle-containing inorganic materials is shown, through pyrolysis of metal-containing derivatives of cyclotriphosphazenes. Pyrolysis in air and at 800 °C of new molecular precursors gives individual single-crystal nanoparticles of SiP2O7, TiO2, P4O7, WP2O7 and SiO2, depending on the precursor used. High resolution transmission electron microscopy investigations reveal, in most cases, perfect single crystals of metal oxides and the first nanostructures of negative thermal expansion metal phosphates with diameters in the range 2–6 nm for all products. While all nanoparticles are new by this method, WP2O7 and SiP2O7 nanoparticles are reported for the first time. In situ recrystallization formation of nanocrystals of SiP2O7 was also observed due to electron beam induced reactions during measurements of the nanoparticulate pyrolytic products SiO2 and P4O7. The possible mechanism for the formation of the nanoparticles at much lower temperatures than their bulk counterparts in both cases is discussed. Degrees of stabilization from the formation of P4O7 affects the nanocrystalline products: nanoparticles are observed for WP2O7, with coalescing crystallization occurring for the amorphous host in which SiP2O7 crystals form as a solid within a solid. The approach allows the simple formation of multimetallic, monometallic, metal-oxide and metal phosphate nanocrystals embedded in an amorphous dielectric. The method and can be extended to nearly any metal capable of successful coordination as an organometallic to allow embedded nanoparticle layers and features to be deposited or written on surfaces for application as high mobility pyrophosphate lithium–ion cathode materials, catalysis and nanocrystal embedded dielectric layers

    Solvent and stabilizer free growth of Ag and Pd nanoparticles using metallic salts/cyclotriphosphazenes mixtures

    Get PDF
    Cyclotriphosphazene is used as a sacrificial solid-state template to synthesize a range of Ag and Pd nanoparticles with diverse geometries by thermal treatment using MLn/N3P3(O2C12H8)3 mixtures. The Pd and Ag nanoparticles are synthesized by solid-state pyrolysis of AgPPh3[CF3SO3]/N3P3(O2C12H8)3 and PdCl2/N3P3(O2C12H8)3 mixtures with molar relationships of 1:1, 1:5 and 1:10 respectively, in air and at 800 °C. The morphology of the as-prepared nanoparticles is found to depend on the molar ratio of the precursor mixture, the preparation method and of the nature of the metal. Ag and Pd, microcrystals were thermally grown on Si from the respective 1:1 precursors while that metal foams were grown from 1:5 ratios precursors on SiO2 wafers. High resolution transmission electron microscopy investigations reveal in most cases small crystals of Pd. HRSTEM measurements indicate that the formation of the Pd and Ag nanoparticles occurs through a phase demixing and dewetting mechanism. This approach has potential to be a useful and facile method to prepare metallic nanoparticles without requiring solutions or surfactants for application in electronic, catalytic and sensor materials and devices
    • 

    corecore