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Abstract 

The synthesis and characterization of new organosilicon derivatives of N3P3Cl6, N3P3 

[NH(CH2)3Si(OEt)3]6 (1), N3P3[NH(CH2)3Si(OEt)3]3[NCH3(CH2)3CN]3 (2) and 

N3P3[NH(CH2)3Si(OEt)3]3 [HOC6H4(CH2)CN]3 (3) is reported. Pyrolysis of (1), (2) and (3) in air and 

at several temperatures results in nanostructured materials whose composition and morphology 

depends on the temperature of pyrolysis and the substituents of the phosphazenes ring. The products 

stem from the reaction of SiO2 with P2O5 leading to either crystalline Si5(PO4)6O, SiP2O7 and/or an 

amorphous phase as the glass Si5(PO4)6O/3SiO2·2P2O5 depending on the temperature and nature of 

the trimer precursors. From (1) at 800 °C, core-shell microspheres of SiO2 coated with Si5(PO4)6O are 

obtained while in other cases  mesoporous or dense structures are observed.  Atomic force 

microscopy examination after deposition of the materials on monocrystalline silicon wafers 

evidences morphology strongly dependent on the precursors.  Isolated islands of size ~9 nm are 

observed from (1) whereas dense nanostructures with a mean height of 13 nm are formed from (3).  

Brunauer-Emmett-Teller measurements show mesoporous materials with low surface areas. The 

proposed growth mechanism involves the formation of cross-linking structures and of vacancies by 

carbonization of the organic matter, where the silicon compounds nucleate. Thus, for the first time, 

unique silicon nanostructured materials are obtained from cyclic phosphazenes containing silicon. 
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 Introduction 

Silicon-based compounds are of immense technological importance from monocrystalline silicon 

as the basis of the digital age to polycrystalline silicon in photovoltaic devices
1
. The fabrication and 

study of silica (SiO2) has received considerable attention in recent years, largely due to their potential 

in diverse applications (e.g. catalysis 
2,3

 ) other than in silicon-based electronic architectures. Their 

nanoscale counterparts enjoy resurgence in interest due in part to the fundamental differences in 

properties between the nanoscale and the bulk material 
4
. 

Nanoparticles of silicon are known to exhibit particle size-dependent optical and electronic 

properties. Such properties are thought to have important applications in the development of 

optoelectronic devices and as solubilized crystalline silicon 
5
. Also, nanostructured silica has received 

considerable attention due to exhibited potential in applications such as photonic / optics crystals, 

nanomicroelectronics/photonics, bionanotechnology and nanocatalysis
6
. 

Several preparation methods of silicon nanoparticles have been reported; the majority facilitated 

by solution reduction of SiCl4 
7
. On other hand, silicon dioxide is generally prepared by the sol–gel 

method 
8,9

. The majority of methods for obtaining either Si or silica nanoparticles are based in 

solutions using polymers as a stabilizer. Apart from Si and SiO2 nanoparticles, few other Si 

containing nanoparticles have been reported. 

We have recently reported 
10

   a solid-state method of obtaining metallic M°; MxOy and 

Mx(P2O7)y nanoparticles by solid-state pyrolysis of polyphosphazene-containing organometallic 

derivatives, (solid-state pyrolysis of organophosphazene/organometallic, SSPO method), summarized 

in Scheme 1.  

 

 

 

 

 

 

 

Scheme 1. Schematic representation of the SSPO method. 
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Because of the importance in obtaining silicon, silica and silicon-containing nanostructured 

materials in their solid state, we have successfully developed a synthetic method of preparing solid 

state silicon-containing nanomaterials from pyrolysis of organosilicon derivatives of 

cyclotriphosphazenes; the formula structure of each organosilicon precursor is outlined in Scheme 2. 

    

N

P

N

P

N

P

NH(CH2)3Si(OEt)3(EtO)3Si(H2C)3HN

NH(CH2)3Si(OEt)3
(EtO)3Si(H2C)3HN

NH(CH2)3Si(OEt)3(EtO)3Si(H2C)3HN

N

P

N

P
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NH(CH2)3Si(OEt)3NC(H2C)3H3CN

NH(CH2)3Si(OEt)3
(EtO)3Si(H2C)3HN

NCH3(CH2)3CNNC(H2C)3H3CN

1

2

N

P

N

P

N

P

NH(CH2)3Si(OEt)3NCH2CC6H4O

NH(CH2)3Si(OEt)3
(EtO)3Si(H2C)3HN

OC6H4CH2CNNCH2CC6H4O

3  

Scheme 2  Structural formulae of the new organosilicon cyclotriphosphazenes (1), (2) and (3). 

 

Although polyphosphazenes have been previously used to stabilize gold nanoparticles in solution 

11
, no examples of stabilization of metal nanoparticles by cyclic phosphazenes in solution or in solid-

state have been reported. We previously reported on the synthesis and characterization of 

organometallic derivatives of cyclotriorganophosphazene
12

 and here we detail the synthetic method 

and characterize several new organosilicon derivatives of cyclotriphosphazenes and their pyrolysis 
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study. Although several cyclotriphosphazenes containing silicon substituents have been prepared by 

Allcock et al 
13

 to our best knowledgement, the synthesis of precursors (1)-(3) has been not reported.      

For the first time, nanostructured silicon-containing materials are obtained from solid-state 

pyrolysis of silicon derivatives of cyclotriphosphazenes.   

 

 Experimental Section  

 

All reactions were carried out under dinitrogen using standard Schlenk techniques. Infra-red (IR) 

spectra were recorded on an FT-IR Perkin-Elmer 2000 spectrophotometer. Solvents were dried and 

purified using standard procedures using N3P3Cl6, [NBu4]Br, K2CO3, H2N(CH2)3Si(OEt)3, 

HN(CH3)(CH2)3CN and HOC6H4CH2CN (Sigma-Aldrich). Nuclear magnetic resonance (NMR) 

spectra were conducted using a Bruker AC-300 instrument with CDCl3 as the solvent unless 

otherwise stated. 
1
H and 

13
C{

1
H} NMR are given in δ relative to TMS. 

31
P{

1
H} are given in δ 

relative to external 85% aqueous H3PO4. Coupling constants are in Hz. Thermogravimetric analysis 

(TGA) and differential scanning calorimetry (DSC) measurements were performed on a Mettler TA 

4000 instrument and Mettler DSC 300 differential scanning calorimeter, respectively. The trimer 

samples were heated at a rate of 10ºC min
-1

 from ambient temperature to 1000ºC under a constant 

flow of nitrogen. 

X-ray diffraction (XRD) was carried out at room temperature on a Siemens D-5000 

diffractometer with θ-2θ geometry. The XRD data was collected using Cu-Kα radiation (40 kV and 

30 mA). Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were 

acquired with a JEOL 5410 SEM with a NORAN Instrument micro-probe transmission microscope. 

Transmission electron microscopy (TEM) were carried out on a JEOL SX100 TEM and on a JEOL 

JEM-2011 operating at  200 kV. The finely powered samples were dispersed in n-hexane and 

dropped on a conventional carbon-coated copper grid dried under a lamp. The pyrolysis experiments 

were carried out by pouring a weighed portion (0.05–0.15 g) of the organometallic trimer into 

aluminum oxide boats placed in a tubular furnace (Lindberg/Blue Oven model STF55346C-1) under 

a flow of air, heated from 25 to 300°C and then to 800°C, and annealed for 2 h. The heating rate was 

10°C min
-1

 under an air flow of 200 mL min
-1

. Brunauer-Emmett-Teller (BET) surface areas were 

calculated from the adsorption isotherm, using a Micromeritics ASP 2010 instrument. The pore size 

distribution was evaluated using the BJH method.    
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Atomic force microscopy (AFM) measurements were performed using a Veeco Explorer AFM in 

tapping mode. Roughness, feature size and image treatment was conducted using the accompanying 

software. Suitable depositions were obtained by dissolving the trimers (1), (2) and (3) in 

dichloromethane, dropping on the silicon wafer, followed by evaporation of the solvent at room 

temperature. Subsequent pyrolysis was conducted at 800°C.  

 

 Synthesis of N3P3[NH(CH2)3 Si(OEt)3]6 (1) 

 

A solution of N3P3Cl6 (5 g, 14.4 mmol) in toluene (20 ml) was added dropwise to 3-

aminopropyl(triethoxy)silane (21.03 g, 95 mmol) and triethylamine (10.57 g, 105 mmol) in toluene 

(50 ml) at room temperature. The reaction mixture was heated under reflux for 4 h. During this time a 

white precipitate formed. The precipitate was removed by filtration. The solvent was evaporated from 

the filtrate and the 3-aminopropyl(triethoxy)silane and triethylamine residues were evaporated under 

vacuum at 100°C. The product was obtained as an opaque liquid in quantitative yield.   

      Elemental analysis: Calc for  C54H132N9O18P3Si6  (found)  C: 44.5 (40.00); H: 9.13 (9.60); N: 8.65 

(8.26). 
31

P NMR (ppm, CDCl3) = 0.72. 
1
H NMR (ppm, CDCl3): δ = 1.18 m, 72 H; 

[(CH2)3Si(OCH2CH3)3]6  ;  0.77 m, 54 H. [(CH2)3Si(OCH2CH3)3]6 

IR (KBr, cm
-1

) 3373 ν(N-H); 2975, ν(C-CH3) 2928, 2886, ν(C-CH2); 1483, δ(Si-CH2); 1189, 1162, 

ν(PN); 1103, 1081, 957 ν(Si-O), 791, 772 δ(C-CH3). Mass spectrum m/z 1455(M
+
), 1410(M

+
- 

OCH2CH3), 1248(M
+
- OCH2CH3- Si(OCH2CH3)3. 

 

         

Synthesis of N3P3[NH(CH2)3Si(OEt)3]3[N(CH3)(CH2)2CN]3  (2)  

  

A solution containing 5 g (14.4 mmol) of N3P3Cl6, 20.21 g (86.14 mmol) of 3-

aminopropyl(triethoxy)silane, 8.066 ml (86.14 mmol) of HN(CH3)(CH2)2CN with triethylamine 

(14.43 ml, 104.0 mmol) in 40 ml of toluene was heated under reflux for 6 h. The light-brown 

precipitate that formed was separated by filtration through a neutral alumina column and the solvent 

removed from solution. The 3-aminopropyl(triethoxy)silane and triethylamine residues were 

evaporated under vacuum at 100°C. The product was obtained as red-brown oil in quantitative yield.   
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Elemental analysis: Calc. For C42H93N12O9P3Si3   (found) C: 44.6 (42.21); H: 8.88 (9.44); N: 10.62 

(12.6). 
31

P NMR (ppm, CDCl3) = 20.8 m 17.97 m ppm. 
1
H NMR (ppm, CDCl3): δ = 1.20 m, 

[(CH2)3Si(OCH2CH3)3]3   36 H; 0.58 m, 27 H, [(CH2)3Si(OCH2CH3)3]3 .    
29

Si NMR (CDCl3, ppm) = 

-45.36 (Si(OCH2CH3)3). IR (KBr, cm
-1

) 3354, 3222, ν(N-H); 2974, ν(C-CH3)  2927, 2885, ν(C-CH2); 

2247.6, ν(CN) 1443, δ(Si-CH2); 1190, 1167, ν(PN); 1102, 108, 957 ν(Si-O), 791, 770 δ(C-CH3). 

Mass spectrum m/z 1086 ((M
+
), 1086 (M

+
- 3OCH2CH3- Si(OCH2CH3)3), 989(M

+
- N(CH3)(CH2)3CN 

)  

 

 

 

Synthesis N3P3 [NH(CH2)3Si (OEt)3]3[OC6H4(CH2)CN]3  (3) 

 

To a solution of N3P3Cl6 (5 g, 14.4 mmol) in toluene (20 ml), 3-aminopropyl(triethoxy)silane 

(1.58 g, 7.15 mmol) and triethylamine (14.43 g, 104 mmol) in toluene (50 ml) was added dropwise at 

room temperature. The reaction mixture was heated under reflux for 1.5 h. The white precipitate was 

filtered off and the solution heated at 100°C to eliminate the 3-aminopropyl(triethoxy)silane and 

trietylamine residues. Subsequently, a solution of 0.95 ml (7.15 mmol) of HOC6H4CH2CN, 11.63 g 

(35.75 mmol) of potassium carbonate and 11.52 g (35.75 mmol) of [NBu4]Br was added and the 

mixture heated under reflux in acetone  for 6 h. The resulting brown solid was removed by filtration 

and the solution was chromatographed on neutral alumina and eluted with CH2Cl2 . The solvent was 

removed from the eluate and the red-brown oil was dried under vacuum for 6 h.   

Elemental analysis: Calc. for C51H84N9O12P3Si3  (found) C: 46.67 (50.53); H: 8.53 (11.18); N: 

9.42 (6.82). 
31

P NMR(CDCl3) = 20.89, 18.69. 
1
H  NMR (ppm, CDCl3): δ = 0.97 m,  

[(CH2)3Si(OCH2CH3)3]3   36 H ; 1.19 m ; 27 H, [(CH2)3Si(OCH2CH3)3]3 .  IR (KBr, cm
-1

) 3417, ν(N-

H); 2967, ν(C-CH3) 2934, 2876, ν(C-CH2); 2240, ν(CN); 1486, δ(Si-CH2); 1189, 1167, ν(PN); 1104, 

1082, 958, ν(Si-O); 793, 771 δ(C-CH3). Mass spectrum m/z 1191 (M
+
), 1059 (M

+
-OC6H4CH2CN), 

844 (M
+
- OCH2CH3   - Si(OCH2CH3)3) 

 

 

 Results and discussion  
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 Synthesis of the precursors  

 

The analytical data are not perfect for compounds (1), (2) and (3). This can be due to two main 

factors: the known  hydrolytic  unstability of   compunds having the -Si(OEt)3 moiety 
8
  as well as the 

incomplete combustion  of these type of samples to give  carbon content lower than that  calculated. 

On the other hand attempts to purification of the oil samples by distillation gave rise to 

decomposition.      

Reaction of N3P3Cl6 with H2N(CH2)3Si(OEt)3 in the presence of triethylamine in toluene as a 

solvent, and at reflux yields N3P3[NH(CH2)3 Si(OEt)3]6 (1) as viscous in color liquid. The 
31

P-NMR 

spectrum exhibits the typical signal at 0.72 ppm characteristic of  N3P3(NR2)6 derivatives 
12 

(the 

spectrun is shown in supporting information S1). The 
1
H-NMR spectrum exhibited the expected 

signal of the aminopropyl(triethoxy)silane 
15

  group see experimental part. In the IR spectrum the 

ν(PN) ring vibration at 1189 and 1162 cm
-1 12

, and the ν(Si-O) at 791, 772 cm
-1

 
 16c

  and the ν(NH) at 

3373 cm
-1

, were observed. Mass spectrum of the product shows the expected molecular ion, see 

experimental part. Another fragments arising from loss of   OCH2CH3  and Si(OCH2CH3)3 were also 

observed.  

The reaction of N3P3Cl6 with H2N(CH2)3Si(OEt)3 and HN(CH3)(CH2)3CN in the presence of 

triethyl amine and toluene as a solvent results in N3P3[NH(CH2)3Si(OEt)3]3 [NCH3(CH2)3CN]3  (2)  as 

a red viscous liquid. Unlike to compound (1), the  
31

 P NMR spectrum for the compound (2) showed 

two resonances at  20.8 ppm. and 17.97 ppm(both nearly multiplets)  with a relative intensity of 1:2, 

see supporting information , S2.  In the three stages of substitution in N3P3Cl6, two products are 

expected  
17,18

, the geminal and nongeminal compound. For the gem-cyclo three, well-separated sets 

of signals are expected, while for the nongeminal substitution, two isomers can be obtained: the 

2,4,6-cis with  one singlet signals  and the 2,4,6-trans two singlets (or in some cases multiplets) 

corresponding to a AX2 system.   
31

 P NMR data for similar structures 
19-25

   are also in agreement 

with that of (2).   

This confirms the structure depicted in Chart 1 for compound (2). In the 
1
H-NMR spectrum the 

expected signals of the aminopropyl(triethoxy)silane group were observed (see experimental part). 

The signals of the groups NCH3(CH2)3CN (not showed in the experimental part)  are normal and 

appears in the expected range
17

.   In their IR spectrum the respective bands corresponding to the 

ν(PN) ring, ν(Si-O) and ν(NH) vibrations were observed at frequency values similar to that of 
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compound (1). The ν(CN) band of the group N(CH3)(CH2)3CN was observed at 2248 cm
-1

. 

Additionally the mass spectrum of (2) did not shows m/e peaks corresponding to another substitution 

product other than that of (2). The molecular ion was observed as expected (see experimental part) as 

well as another peaks arising from the loss of Si(OCH2CH3)3 ,   OCH2CH3 and N(CH3)(CH2)3CN 

groups.  

The reaction of N3P3Cl6 with 3 equivalent of H2N(CH2)3Si(OEt)3 in presence of triethylamine in 

toluene as a solvent yields, at reflux, the intermediate N3P3[NH(CH2)3 Si(OEt)3]3[Cl]3  which reacts  

with HOC6H4(CH2)CN in acetone and in  presence of  K2CO3 to give  N3P3[NH(CH2)3 

Si(OEt)3]3[OC6H4(CH2)CN]3 (3) as a red-brown oil. Their 
31

P-NMR spectra exhibit, similar to those 

of (2),  two signal at 20.89 (quartet) and 18.69 (tripet) ppm, with reltive intensity of 2:1 typical of  an 

AB2 system see supporting information S2.    
1
H-NMR spectrum was normal and similar (with 

respect to the aminopropyl triethoxy silane group signals) to that of (2). 

As previously discussed, this confirms nongeminal substitution and supports the structure 

proposed in Chart 1.  In their respective IR spectra, the bands corresponding to the ν(PN) ring, ν(Si-

O) and ν(NH) vibrations were observed at frequency values similar to that of compound (1) and (2). 

Similarly to (2), the ν(CN) band of the OC6H4(CH2)CN group was observed at  2240 cm
-1

. The mass 

spectrum showed the expected molecular ion as well as another peaks arising from the loss of the 

fragments OCH2CH3,    Si(OCH2CH3)3 and  OC6H4CH2CN.  

 

 Pyrolysis of the Si precursors  

 

Pyrolysis of the silicon-containing cyclic trimer phosphazenes (1), (2) and (3) results in gray 

solids in yields of 20-30%. Morphologies of the products depend on the temperature of the pyrolysis 

and on substituents around the phosphazenes phosphorus. For instance, in comparing the morphology 

(SEM) of the pyrolytic products at 800°C  from (1), (2) and (3), shown in Fig. 1, we observe 

spherical shapes from (1), mostly irregular shapes from pyrolysis of (2) and porous materials from 

(3). EDAX analysis exhibits the presence of silicon, phosphorus and some oxygen atoms. A 

representative EDAX spectrum is shown in Fig. 1d.  
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                                                                            (a) 

 

 

(b) 

 

 

Figure 1 SEM images of the pyrolytic products from precursors (a) (1), (b) (2) and (c) (3). A 

representative EDAX spectrum is also shown in (d).  

 

The temperature can also affect the morphology as is seen in Fig. 2 for the products from 

pyrolysis of (2) at 600°C, 800°C and 1000°C. At the highest temperature, a dense and ceramic-like 

structure is observed. Composition of the materials was investigated by EDAX analysis, powder X- 

ray diffraction and IR spectroscopy. EDAX analysis for the pyrolysis products from (1), (2) and (3) 

  5 µm 

        (c)         (d) 

  5 µm 

  5 µm 
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exhibits similar patterns confirming the presence of silicon, phosphorus and trace quantity of oxygen 

as is shown in Figs 1d and 2d. 

(a) 

 

(b) 

 

(c) 

 

 

(d) 

 

 

Figure 2 SEM images of the pyrolytic products from precursor (2) at several temperatures: (a) 600 

°C, (b) 800°C and (c) 1000°C.  A representative EDAX spectrum for these products is also shown in 

(d).  

  

The powder diffraction patterns of the products, shown in Fig. 3 are somewhat dependent on the 

temperature as well as on the nature of the OR groups linked to the cyclotriphosphazenes core. 

Scheme 2 shows the distribution of products after pyrolysis as a function of temperature for 

  5 µm   5 µm 

  5 µm 
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precursors (1), (2) and (3). For example, Fig. 3 shows the XRD pattern for (2) at 1000°C, (3) at 

800°C  and (1) at    1000°C. The small angle diffraction pattern for (1) at  1000°C is also shown. 

 

Scheme 3 Schematic representation of the distribution of products from pyrolysis of precursors (1), 

(2) and (3) at several temperatures. 

 

In general, three products from the reaction of SiO2 and P2O5 were observed i.e., crystalline 

Si5(PO4)6O and SiP2O7  and a glassy amorphous phase Si5(PO4)6O/3SiO2·2P2O5. It is known that the 

reaction of SiO2 and P2O5 or SiO2 with H3PO4  results in the formation of Si5(PO4)6O, SiP2O7  or the 

glassy Si5(PO4)6O/3SiO2·2P2O5 depending on the temperature and on the conditions of the reaction 

26a-e
. However  the as obtained  materials are microcrystalline sample  and  not nanostructured  as the 

obtained by the here presented  results.  
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(a) 

 

 

 

(b) 

 

(c) 

 

 

 

(d) 

 

Figure 3 X-ray powder diffraction data for the pyrolytic products from: (a) (1) at 1000°C, (b) (3) at 

800°C and (c) (2) at 800°C. (d) SAXRD pattern for (1) at 1000. °C. 

 

The X-ray diffraction pattern for (3) at 800°C exhibits peaks corresponding to Si5(PO4)6O
26b

  

(arrows), the glass Si5(PO4)6O/3SiO2·2P2O5 
26-28

 (circles) and SiP2O7  
26c,d

 (triangles), see Fig. 3b In 

contrast, the diffraction data for (2) at 800°C exhibits only peaks corresponding to Si5(PO4)6O, Fig. 

3c.  Pyrolysis of (1) at 1000°C, however, results in several crystalline forms of SiO2 as is shown in 

Fig. 3a. This is in good agreement with the previously reported decomposition of SiP2O7 at 

temperature above 1000°C
26b-d

, to give SiO2   and    P2O5 .   Some hexagonal MCM-41 SiO2 phase was 
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also formed as is seen from the low angle XRD pattern shown in Fig. 3d, similar to a recent report of 

SiP2O7 grafted to MCM-41
26f

.  

From Scheme 1, it can be seen that Si5(PO4)6O is present in the pyrolysis of precursors (1), (2) 

and (3) at all temperatures assayed. In contrast, the pyrophosphate salt SiP2O7 was present only for 

precursor (3) at 800°C. The glass of composition, Si3PO4/3SiO2/2P2O5 was also observed in the 

pyrolysis of (3) at the all temperatures examined. This product was only observed at 600°C and 

1000°C for the pyrolysis of (3). Conversely, SiO2 was obtained for all three precursor but at only at a 

single temperature for each one. Amorphous and crystalline materials of composition MxOy/nSiO2/ 

mP2O5 are interesting due to third-order nonlinear optical susceptibility properties, when    MxOy  is a  

transition metal oxide  
27

 , and  bioactive ceramic behavior is observed when the composition MxOy is 

that of Na2O, MgO or CaF2 
28,29

.      

The microspheres formed in the pyrolysis of precursor (1) at 800°C are the first generated 

using phosphazenes as a template 
10

. The resulting spheres were further investigated by means of 

TEM. Figure 4a-f  displays the micrographs of a sample after calcinations at 800°C. 
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Figure 4  TEM images of pyrolytic products from (a), (b)  (1) ;  (b), (c)  (2), and (e), (f)  (3) at 800°C. 

Inset to (b) and  (d) are the respective electron diffraction images patterns .   
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The core-shell spheres structure of the aggregate nanoparticles of Si5(PO4)6O/SiO2 was possible to 

observe  clearly in the case of  pyrolysis of precursor (3),  as is shown in figures 4e,f. For all the cases 

the core-shell structure was also corroborated from  energy dispersive X-Ray spectroscopy data and 

using a   method previously reported 
30,31

 based on the core/shell contents in this case,  from the  Si/P 

contents at of SiO2 spheres coated with  Si5(PO4)6O. As is  ilustrated for the  pyrolytic product from 

(1)  and (2) the  electron diffraction image  indicates somewhat amorphous material in all the cases.   

 

 

BET Studies 

 

BET studies were conducted on compounds (1), (2) and (3) to quantify the degree of porosity 

observed by SEM. The N2 adsorption isotherms of the pyrolytic product from (1) indicate the 

presence of mesopores with a mean diameter of 24.4 nm as measured from the pore size distribution 

curve with a relatively low surface area of 3.2 m
2
 g

-1
. Similar observations are found for the pyrolytic 

products from (2) and (3) with values of mean pore size of 52.1 nm and 19.9 nm, respectively, with 

corresponding surface areas of 2.0 and 2.3 m
2
 g

-1
. These values are less than those found for 

SiO2·P2O5·MxOy glasses 
33

. 

 

 Possible formation mechanism of the Si nanostructured materials 

 

Some insight into the mechanism of formation of the nanostructured silicon materials from 

the silylated cyclotriphosphazenes precursors can be obtained from the TGA/DSC in air, shown in 

Fig. 5a. TGA and DSC for the pyrolytic products from (2) and (3)  exhibit similar behaviour see  
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(a) 

 

 

(b) 

 

 

Figure  5. TGA curve for the pyrolytic product from precursor (1): (a) in air and (b) in N2 

supporting information S5-S11 

The initial weight loss of 9.31% is attributed to the volatilization of NO2 by oxidation of the 

nitrogen content of the cyclic trimer. The second weight loss corresponds to the carbonization of the 

organic matter arising from the N(CH3)(CH2)3CN groups. The following weight loss is attributed to 

loss of CO2 from carbonization of the remainder organic matter, i.e. the Si(OEt)3 groups. The 41.19% 

pyrolytic residue is close to that expected for SiO2, Si5(PO4)6O 39.76%. It is at this point that the 

cyclotriphosphazene acts as a hybrid organic-inorganic template in the solid state in the formation of 

the silicon nanoparticles. This implies that on initial heating, a cross-linked structure involving 

cyclotriphosphazene linked by Si-O-Si bridges is formed. In fact organosilicon derivatives of 

cyclotriphosphazene undergo cross-linking of the ring on heating 
34

. The organic moiety, after 

calcination, produces holes in the cross-linked structures, which permit agglomeration of the silicon 

containing  particles. The inorganic PN backbone of the polyphosphazenes in the presence of oxygen 

provides phosphorus atoms for the formation of the corresponding phosphorus oxides which react 

with the SiO2 to form Si5(PO4)6O (or Si5(PO4)6O/3SiO2·2P2O5 or SiP2O7  in some cases). 

DSC curves also performed in air (see Supporting Information S9-S11) are also in agreement 

with this proposed mechanism. In fact, the exothermal peaks at 250°C and 300°C can be assigned to 

the carbonization of the organic matter. Similar exothermic peaks have been observed during the 

oxidation of organometallic complexes 
36-38

. 

Interestingly, the TGA curve in N2 (see Fig. 5b) exhibits similar loss weight patterns. According 

to the equation for the combustion of the trimer (1) : 
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2N3P3[NH(CH2)3 Si(OEt)3]6    + 291/2 O2   →  Si5(PO4)6O + 7SiO2 + 108 CO2  + 18NO2        (1) 

the oxygen content necessary for the formation of SiO2 and Si5(PO4)6O in the absence of air (N2 in 

this instance) can be partially supplied by  the oxygen from the Si(OEt)3 groups, but the quantity 

available is insufficient for the total carbonization of the organic matter.  

Thus, this mechanism is in agreement with those proposed for the formation of nanostructured 

metal foams from thermal decomposition of bi(tetrazolato)amine complexes 
38

 and from thermal 

decomposition of  ¨[Fe( η-C5H4)2(SiRR´)]n polymers 
39

. 

 

IR spectra  

 

The IR and Raman spectra of the products from the reactions of SiO2 with P2O5 have been studied 

in detail
40

. All pyrolytic products from (1), (2) and (3) exhibit absorptions at 1180-1050 (vs, broad), 

800-680 (w), and 490 (s, broad), which are typical of some of the reaction products of SiO2 with 

P2O5, i.e. crystalline Si5(PO4)6O, SiP2O7  or the amorphous glass Si5(PO4)6O/3SiO2·2P2O5 . 

 

 Surface morphological studies of deposited precursors  

Suitable AFM studies of the trimer samples were achieved by dissolving a dichloromethane 

solution followed by dropwise deposition onto a silicon wafer, evaporation at room temperature and 

pyrolysis at 800°C. For trimer (1) separated grains of average height ~20 nm were observed as is 

shown in Fig. 6 .  

The pyrolytic product from trimer (2) is observed to form large islands with varied size (from 50 

nm to 180 nm) that nucleate and grow progressively in three dimensions, as is shown in Fig. 6b. In 

several cases these islands are either isolated or joined forming a chain, shown in Fig. 6b. For the 

pyrolytic product from trimer (3), a more uniform coverage of the nanostructures is observed, as is 

shown in Fig. 6c . 
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(a) 

      

 

(b) 

       

(c) 
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Figure 6. AFM  images of the pyrolytic products from (a) precursor (1), (b) precursor (2) and (c)  

precursor (3). 

 

Conclusions  

 

Siliceous nanostructured materials are accessible in a wide range of morphologies and 

composition through the solid-state pyrolysis of new precursors (1), (2) and (3). Both the morphology 

and composition of the nanostructured products are strongly dependent on the nature of the groups  

around the phosphazenic ring and on the temperature of the pyrolysis. Oxidation of the phosphorus of 

the polymeric chain and of the silicon from the siloxane groups gives P2O5 and SiO2,  respectively, 

which react resulting in silicon phosphates in their crystalline phases Si5(PO4)6O and SiP2O7 and/or 

amorphous phase as the glass Si5(PO4)6O/3SiO2·2P2O5. These nanoparticles growth inside the 

vacancies, which are formed by carbonization of the organic matter, given rise to nanostructured 

silicon compounds. 

AFM images evidence increasing grains density on the surface of the deposition on going to pyrolytic 

precursor (1) to (3). This new technique shows promise for being a flexible, general approach to the 

formation of a range of nanostructured siliceous pyrophosphate materials not currently accessible by 

other methods.      
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