170 research outputs found

    Predictive Coding For Animation-Based Video Compression

    Full text link
    We address the problem of efficiently compressing video for conferencing-type applications. We build on recent approaches based on image animation, which can achieve good reconstruction quality at very low bitrate by representing face motions with a compact set of sparse keypoints. However, these methods encode video in a frame-by-frame fashion, i.e. each frame is reconstructed from a reference frame, which limits the reconstruction quality when the bandwidth is larger. Instead, we propose a predictive coding scheme which uses image animation as a predictor, and codes the residual with respect to the actual target frame. The residuals can be in turn coded in a predictive manner, thus removing efficiently temporal dependencies. Our experiments indicate a significant bitrate gain, in excess of 70% compared to the HEVC video standard and over 30% compared to VVC, on a datasetof talking-head videosComment: Accepted paper: ICIP 202

    Subjective Media Quality Recovery From Noisy Raw Opinion Scores: A Non-Parametric Perspective

    Get PDF
    This paper focuses on the challenge of accurately estimating the subjective quality of multimedia content from noisy opinion scores gathered from end-users. State-of-the-art methods rely on parametric statistical models to capture the subject's scoring behavior and recover quality estimates. However, these approaches have limitations, as they often require restrictive assumptions to achieve numerical stability during parameter estimation, leading to a lack of robustness when the modeling hypotheses do not fit the data. To overcome these limitations, we propose a paradigm shift towards non-parametric statistical methods. Specifically, we introduce a threefold contribution: i) in contrast to the prevailing approach in subjective quality recovery assuming a parametric score distribution, we propose a non parametric approach that guarantees greater accuracy by measuring reliability per subject and per stimulus, overcoming the limits of existing approaches that measure only per subject reliability; ii) we propose ESQR, a non-parametric algorithm for subjective quality recovery, demonstrating experimentally that it has higher robustness to noise compared to numerous state-of-the-art algorithms, thanks to the weaker assumptions made on data compared to parametric approaches; iii) the proposed approach is theoretically grounded, i.e., we define a non-parametric statistic and prove mathematically that it provides a measure of score reliability. The code to run ESQR and reproduce the results in this paper is made freely available at: http://media.polito.it/ESQR

    PCQA-GRAPHPOINT: Efficients Deep-Based Graph Metric For Point Cloud Quality Assessment

    Full text link
    Following the advent of immersive technologies and the increasing interest in representing interactive geometrical format, 3D Point Clouds (PC) have emerged as a promising solution and effective means to display 3D visual information. In addition to other challenges in immersive applications, objective and subjective quality assessments of compressed 3D content remain open problems and an area of research interest. Yet most of the efforts in the research area ignore the local geometrical structures between points representation. In this paper, we overcome this limitation by introducing a novel and efficient objective metric for Point Clouds Quality Assessment, by learning local intrinsic dependencies using Graph Neural Network (GNN). To evaluate the performance of our method, two well-known datasets have been used. The results demonstrate the effectiveness and reliability of our solution compared to state-of-the-art metrics

    From pairwise comparisons and rating to a unified quality scale.

    Get PDF
    The goal of psychometric scaling is the quantification of perceptual experiences, understanding the relationship between an external stimulus, the internal representation and the response. In this paper, we propose a probabilistic framework to fuse the outcome of different psychophysical experimental protocols, namely rating and pairwise comparisons experiments. Such a method can be used for merging existing datasets of subjective nature and for experiments in which both measurements are collected. We analyze and compare the outcomes of both types of experimental protocols in terms of time and accuracy in a set of simulations and experiments with benchmark and real-world image quality assessment datasets, showing the necessity of scaling and the advantages of each protocol and mixing. Although most of our examples focus on image quality assessment, our findings generalize to any other subjective quality-of-experience task.This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement n◦ 725253–EyeCode), from EPSRC research grant EP/P007902/1 and from a Science Foundation Ireland (SFI) research grant under the Grant Number 15/RP/2776. Marıa Pérez-Ortiz did part of this work while at the University of Cambridge and University College London (under MURI grant EPSRC 542892)

    Livrable D3.4 of the PERSEE project : 2D coding tools final report

    Get PDF
    Livrable D3.4 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D3.4 du projet. Son titre : 2D coding tools final repor

    3D coding tools final report

    Get PDF
    Livrable D4.3 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D4.3 du projet. Son titre : 3D coding tools final repor

    A model of perceived dynamic range for HDR images

    Get PDF
    For High Dynamic Range (HDR) content, the dynamic range of an image is an important characteristic in algorithm design and validation, analysis of aesthetic attributes and content selection. Traditionally, it has been computed as the ratio between the maximum and minimum pixel luminance, a purely objective measure; however, the human visual system's perception of dynamic range is more complex and has been largely neglected in the literature. In this paper, a new methodology for measuring perceived dynamic range (PDR) of chromatic and achromatic HDR images is proposed. PDR can benefit HDR in a number of ways: for evaluating inverse tone mapping operators and HDR compression methods; aesthetically; or as a parameter for content selection in perceptual studies. A subjective study was conducted on a data set of 36 chromatic and achromatic HDR images. Results showed a strong agreement across participants' allocated scores. In addition, a high correlation between ratings of the chromatic and achromatic stimuli was found. Based on the results from a pilot study, five objective measures (pixel-based dynamic range, image key, area of bright regions, contrast and colorfulness) were selected as candidates for a PDR predictor model; two of which have been found to be significant contributors to the model. Our analyses show that this model performs better than individual metrics for both achromatic and chromatic stimuli
    • …
    corecore