4,241 research outputs found

    Astrophysical and Cosmological Tests of Quantum Theory

    Get PDF
    We discuss several proposals for astrophysical and cosmological tests of quantum theory. The tests are motivated by deterministic hidden-variables theories, and in particular by the view that quantum physics is merely an effective theory of an equilibrium state. The proposed tests involve searching for nonequilibrium violations of quantum theory in: primordial inflaton fluctuations imprinted on the cosmic microwave background, relic cosmological particles, Hawking radiation, photons with entangled partners inside black holes, neutrino oscillations, and particles from very distant sources.Comment: 25 pages. Amendment to section 7. Contribution to: "The Quantum Universe", special issue of Journal of Physics A, dedicated to Prof. G.-C. Ghirardi on the occasion of his seventieth birthda

    Inflationary Cosmology as a Probe of Primordial Quantum Mechanics

    Full text link
    We show that inflationary cosmology may be used to test the statistical predictions of quantum theory at very short distances and at very early times. Hidden-variables theories, such as the pilot-wave theory of de Broglie and Bohm, allow the existence of vacuum states with non-standard field fluctuations ('quantum nonequilibrium'). We show that inflationary expansion can transfer microscopic nonequilibrium to macroscopic scales, resulting in anomalous power spectra for the cosmic microwave background. The conclusions depend only weakly on the details of the de Broglie-Bohm dynamics. We discuss, in particular, the nonequilibrium breaking of scale invariance for the primordial (scalar) power spectrum. We also show how nonequilibrium can generate primordial perturbations with non-random phases and inter-mode correlations (primordial non-Gaussianity). We address the possibility of a low-power anomaly at large angular scales, and show how it might arise from a nonequilibrium suppression of quantum noise. Recent observations are used to set an approximate bound on violations of quantum theory in the early universe.Comment: 44 pages. Minor changes in v

    Effect of metal clusters on the swelling of gold-fluorocarbon-polymer composite films

    Full text link
    We have investigated the phenomenon of swelling due to acetone diffusion in fluorocarbon polymer films doped with different gold concentrations below the percolation threshold. The presence of the gold clusters in the polymer is shown to improve the mixing between the fluorocarbon polymer and the acetone, which is not a good solvent for this kind of polymers. In order to explain the experimental results the stoichiometry and the morphology of the polymer--metal system have been studied and a modified version of the Flory--Huggins model has been developed

    Comparing unconstrained parametrization methods for return covariance matrix prediction

    Get PDF
    Forecasting covariance matrices is a difficult task in many research fields since the predicted matrices should be at least positive semidefinite. This problem can be overcome by including constraints in the predictive model or through a parametrization of the matrices to be predicted. In this paper, we focus on the latter approach in a financial application and analyse four parametrizations of the covariance matrices of asset returns. The aim of the manuscript is to understand if the parametrizations of the covariance matrices exhibit differences in terms of predictive accuracy. To this end, we critically analyse their predictive performance through both a Monte Carlo simulation and an empirical application with daily and weekly realized covariance matrices of stock assets. Our findings highlight that the Cholesky decomposition and the parametrization recently introduced by Archakov and Hansen are the overall best-performing methods in terms of forecasting accuracy

    Analysing spatiotemporal patterns of Covid-19 confirmed deaths at the NUTS-2 regional level

    Get PDF
    During the ongoing Covid-19 pandemic, understanding the spatiotemporal patterns of the virus is crucial for policymakers to intervene promptly. The relevance of spatial proximity in the spread of the pandemic necessitates adequate tools, and noisy data must be properly treated. This study proposes obtaining clusters of European regions using smoothed curves of daily deaths from March 2020-March 2022. A functional representation of the curves

    Photoemission tuning of nanodiamond particles treated in variable percentages of H2H_2-N2N_2 plasmas

    Get PDF
    This work deals with photochatodes (PCs) based on as-received and treated nanodiamond (ND) particles, 250 nm in size. The aim of this study is the hydro-, hydro-/nitro- and nitro-genation of NDs performed in microwave plasmas adding different N2N_2 percentages (0, 50 and 100 %) to pure H2H_2 gas. Untreated and treated NDs are dispersed in solvents such as 1,2-dichloroethane and deionized water, and then deposited, as continuous layers, on p-Si and kapton substrates by the pulsed spray technique. The produced layers are characterized by Raman, photoluminescence spectroscopies and photoemission measurements. The quantum efficiency (QE), a merit figure for photocathodes, is assessed in the UV spectral range from 146 to 210 nm. The results show an enhancement of the photoemission for PCs based on hydro-, hydro-/nitro- and nitro-genated NDs that exhibit at 146 nm QE values of about 23, 21 and 13 %, respectively. The advantage of nitrogenated PCs is the good stability to air exposure against their lowest QE values

    Alveolar recruitment manoeuvre in laterally recumbent anaesthetized sheep.

    Get PDF
    General anaesthesia in laterally recumbent sheep under spontaneous ventilating may cause hypoxaemia as previously reported. The stepwise ARM followed by mechanical ventilation with PEEP at 5 cmH2O, improves the oxygenation indices and decrease the amount of venous admixture evaluated by the F-shunt. The positive effects of the ARM are still present in most of the animals at recovery

    A first experimental test of de Broglie-Bohm theory against standard quantum mechanics

    Full text link
    De Broglie - Bohm (dBB) theory is a deterministic theory, built for reproducing almost all Quantum Mechanics (QM) predictions, where position plays the role of a hidden variable. It was recently shown that different coincidence patterns are predicted by QM and dBB when a double slit experiment is realised under specific conditions and, therefore, an experiment can test the two theories. In this letter we present the first realisation of such a double slit experiment by using correlated photons produced in type I Parametric Down Conversion. Our results confirm QM contradicting dBB predictions

    Signal-Locality and Subquantum Information in Deterministic Hidden-Variables Theories

    Get PDF
    It is proven that any deterministic hidden-variables theory, that reproduces quantum theory for a 'quantum equilibrium' distribution of hidden variables, must predict the existence of instantaneous signals at the statistical level for hypothetical 'nonequilibrium ensembles'. This 'signal-locality theorem' generalises yet another feature of the pilot-wave theory of de Broglie and Bohm, for which it is already known that signal-locality is true only in equilibrium. Assuming certain symmetries, lower bounds are derived on the 'degree of nonlocality' of the singlet state, defined as the (equilibrium) fraction of outcomes at one wing of an EPR-experiment that change in response to a shift in the distant angular setting. It is shown by explicit calculation that these bounds are satisfied by pilot-wave theory. The degree of nonlocality is interpreted as the average number of bits of 'subquantum information' transmitted superluminally, for an equilibrium ensemble. It is proposed that this quantity might provide a novel measure of the entanglement of a quantum state, and that the field of quantum information would benefit from a more explicit hidden-variables approach. It is argued that the signal-locality theorem supports the hypothesis, made elsewhere, that in the remote past the universe relaxed to a state of statistical equilibrium at the hidden-variable level, a state in which nonlocality happens to be masked by quantum noise
    • …
    corecore