49 research outputs found

    A Strategy for Eliciting Antibodies against Cryptic, Conserved, Conformationally Dependent Epitopes of HIV Envelope Glycoprotein

    Get PDF
    Novel strategies are needed for the elicitation of broadly neutralizing antibodies to the HIV envelope glycoprotein, gp120. Experimental evidence suggests that combinations of antibodies that are broadly neutralizing in vitro may protect against challenge with HIV in nonhuman primates, and a small number of these antibodies have been selected by repertoire sampling of B cells and by the fractionation of antiserum from some patients with prolonged disease. Yet no additional strategies for identifying conserved epitopes, eliciting antibodies to these epitopes, and determining whether these epitopes are accessible to antibodies have been successful to date. The defining of additional conserved, accessible epitopes against which one can elicit antibodies will increase the probability that some may be the targets of broadly neutralizing antibodies.We postulate that additional cryptic epitopes of gp120 are present, against which neutralizing antibodies might be elicited even though these antibodies are not elicited by gp120, and that many of these epitopes may be accessible to antibodies should they be formed. We demonstrate a strategy for eliciting antibodies in mice against selected cryptic, conformationally dependent conserved epitopes of gp120 by immunizing with multiple identical copies of covalently linked peptides (MCPs). This has been achieved with MCPs representing 3 different domains of gp120. We show that some cryptic epitopes on gp120 are accessible to the elicited antibodies, and some epitopes in the CD4 binding region are not accessible. The antibodies bind to gp120 with relatively high affinity, and bind to oligomeric gp120 on the surface of infected cells.Immunization with MCPs comprised of selected peptides of HIV gp120 is able to elicit antibodies against conserved, conformationally dependent epitopes of gp120 that are not immunogenic when presented as gp120. Some of these cryptic epitopes are accessible to the elicited antibodies

    CELLULAR IMMUNITY IN VITRO

    Full text link

    Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy

    Get PDF
    Background: The new protease inhibitors are potent inhibitors of the human immunodeficiency virus (HIV), and in combination with other antiretroviral drugs they may be able to cause profound and sustained suppression of HIV replication. Methods: In this double-blind study, 97 HIV-infected patients who had received zidovudine treatment for at least 6 months and had 50 to 400 CD4 cells per cubic millimeter and at least 20,000 copies of HIV RNA per milliliter were randomly assigned to one of three treatments for up to 52 weeks: 800 mg of indinavir every eight hours; 200 mg of zidovudine every eight hours combined with 150 mg of lamivudine twice daily; or all three drugs. The patients were followed to monitor the occurrence of adverse events and changes in viral load and CD4 cell counts. Results: The decrease in HIV RNA over the first 24 weeks was greater in the three-drug group than in the other groups (P�0.001 for each comparison). RNA levels decreased to less than 500 copies per milliliter at week 24 in 28 of 31 patients in the threedrug group (90 percent), 12 of 28 patients in the indinavir group (43 percent), and none of 30 patients in the zidovudine–lamivudine group. The increase in CD4 cell counts over the first 24 weeks was greater in the two groups receiving indinavir than in the zidovudine– lamivudine group (P<0.01 for each comparison). The changes in the viral load and the CD4 cell count persisted for up to 52 weeks. All the regimens were generally well tolerated. Conclusions: In most HIV-infected patients with prior antiretroviral therapy, the combination of indinavir, zidovudine, and lamivudine reduces levels of HIV RNA to less than 500 copies per milliliter for as long as one year. (N Engl J Med 1997;337:734-9.

    Monitoring Virologic Responses to Antiretroviral Therapy in HIV-Infected Adults in Kenya: Evaluation of a Low-Cost Viral Load Assay

    Get PDF
    A key advantage of monitoring HIV viral load (VL) in persons receiving antiretroviral therapy (ART) is the ability to detect virologic failure before clinical deterioration or resistance occurs. Detection of virologic failure will help clarify the need for enhanced adherence counseling or a change to second- line therapy. Low-cost, locally performable alternates to expensive VL assays are needed where resources are limited.We monitored the response to 48-week ART in 100 treatment-naïve Kenyan adults using a low-cost VL measurement, the Cavidi reverse transcriptase (RT) assay and gold-standard assays, Roche RNA PCR and Bayer Versant HIV-1 RNA (bDNA) assays. In Altman-Bland plots, the mean difference in viral loads between the three assays was small (<0.5 log(10) copies/mL). However, the limits of agreement between the methods exceeded the biologically relevant change of 0.5 log copies/ml. Therefore, the RT assay cannot be used interchangeably with the other assays to monitor individual patients. The RT assay was 100% sensitive in detecting viral loads of > or =400 copies/ml compared to gold-standard assays. After 24 weeks of treatment, viral load measured by the RT assay was undetectable in 95% of 65 patients with undetectable RNA PCR VL (<400 copies/ml), 90% of 67 patients with undetectable bDNA VL, and 96% of 57 patients with undetectable VL in both RNA PCR and bDNA assays. The negative predictive value of the RT assay was 100% compared to either assay; the positive predictive value was 86% compared to RNA PCR and 70% compared to bDNA.The RT assay compared well with gold standard assays. Our study highlights the importance of not interchanging viral load assays when monitoring an individual patient. Furthermore, the RT assay may be limited by low positive predictive values when used in populations with low prevalence of virologic failure

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation
    corecore