44 research outputs found

    Facilitation of the inhibitory transmission by gastrin-releasing peptide in the anterior cingulate cortex

    Get PDF
    Gastrin-releasing peptide (GRP) has been proposed as a peptidergic molecule for behavioral fear and itching. Immunohistochemistry and in situ hybridization studies have shown that GRP and GRP receptor are widely distributed in forebrain areas. Less information is available for the functional action for GRP in the prefrontal cortex including the anterior cingulate cortex (ACC). Here we used whole-cell patch-clamp recording technique to study the modulation of synaptic transmission by GRP in the ACC. We found that GRP increased the frequency of sIPSCs recorded while had no significant effect on sEPSCs in ACC pyramidal neurons. The facilitatory effect of GRP on sIPSCs was blocked by the GRP receptor antagonist, RC3095. In the presence of TTX, however, GRP had no effect on the mIPSCs. Therefore, activation of GRP receptor may facilitate the excitation of the interneurons and enhanced spontaneous GABAergic, but not glutamatergic neurotransmission. Similar results on GRP modulation of GABAergic transmission were observed in the insular cortex and amygdala, suggesting a general possible effect of GRP on cortical inhibitory transmission. Our results suggest that GRP receptor is an important regulator of inhibitory circuits in forebrain areas

    Calcium/calmodulin-dependent kinase IV contributes to translation-dependent early synaptic potentiation in the anterior cingulate cortex of adult mice

    Get PDF
    Calcium/calmodulin-dependent kinase IV (CaMKIV) phosphorylates the major transcription factor, cyclic AMP-responsive element binding protein (CREB), which plays key roles in synaptic plasticity and memory consolidation. Our previous study showed that long-term potentiation (LTP) in the anterior cingulate cortex (ACC) was significantly enhanced in transgenic mice overexpressing CaMKIV. Considering that the CaMKIV-CREB pathway plays a central role in the protein synthesis-dependent LTP, it is possible that upregulation of CaMKIV contributes to enhancement of LTP by promoting protein synthesis. To test this possibility, we examined the effects of transcription and translation inhibitors on synaptic potentiation induced by pairing of synaptic activity with postsynaptic depolarization (paired training) in ACC pyramidal neurons of wild-type and CaMKIV transgenic mice. We found that synaptic potentiation induced by paired training was partially inhibited by transcription or translation inhibitors both in wild-type and CaMKIV transgenic mice; the extent of inhibition was markedly larger in the CaMKIV transgenic mice than in the wild-type mice. Biochemical and immunohistochemical studies revealed that CaMKIV was distributed in the membrane, cytosol and nucleus of ACC neurons. Our results reveal in the first time a transcription- and translation-dependent component of early synaptic LTP in adult ACC synapses, and demonstrate that CaMKIV enhances early synaptic potentiation by activating new protein synthesis

    Neurabin in the anterior cingulate cortex regulates anxiety-like behavior in adult mice

    Get PDF
    Affective disorders, which include anxiety and depression, are highly prevalent and have overwhelming emotional and physical symptoms. Despite human brain imaging studies, which have implicated the prefrontal cortex including the anterior cingulate cortex (ACC), little is known about the ACC in anxiety disorders. Here we show that the ACC does modulate anxiety-like behavior in adult mice, and have identified a protein that is critical for this modulation. Absence of neurabin, a cytoskeletal protein, resulted in reduced anxiety-like behavior and increased depression-like behavior. Selective inhibition of neurabin in the ACC reproduced the anxiety but not the depression phenotype. Furthermore, loss of neurabin increased the presynaptic release of glutamate and cingulate neuronal excitability. These findings reveal novel roles of the ACC in anxiety disorders, and provide a new therapeutic target for the treatment of anxiety disorders

    Optogenetic inhibitor of the transcription factor CREB

    Get PDF
    Current approaches for optogenetic control of transcription do not mimic the activity of endogenous transcription factors, which act at numerous sites in the genome in a complex interplay with other factors. Optogenetic control of dominant negative versions of endogenous transcription factors provides a mechanism for mimicking the natural regulation of gene expression. Here we describe opto-DN-CREB, a blue light controlled inhibitor of the transcription factor CREB created by fusing the dominant negative inhibitor A-CREB to photoactive yellow protein (PYP). A light driven conformational change in PYP prevents coiled-coil formation between A-CREB and CREB, thereby activating CREB. Optogenetic control of CREB function was characterized in vitro, in HEK293T cells, and in neurons where blue light enabled control of expression of the CREB targets NR4A2 and c-Fos. Dominant negative inhibitors exist for numerous transcription factors; linking these to optogenetic domains offers a general approach for spatiotemporal control of native transcriptional events

    Optogenetic inhibitor of the transcription factor CREB

    Get PDF
    Current approaches for optogenetic control of transcription do not mimic the activity of endogenous transcription factors, which act at numerous sites in the genome in a complex interplay with other factors. Optogenetic control of dominant negative versions of endogenous transcription factors provides a mechanism for mimicking the natural regulation of gene expression. Here we describe opto-DN-CREB, a blue light controlled inhibitor of the transcription factor CREB created by fusing the dominant negative inhibitor A-CREB to photoactive yellow protein (PYP). A light driven conformational change in PYP prevents coiled-coil formation between A-CREB and CREB, thereby activating CREB. Optogenetic control of CREB function was characterized in vitro, in HEK293T cells, and in neurons where blue light enabled control of expression of the CREB targets NR4A2 and c-Fos. Dominant negative inhibitors exist for numerous transcription factors; linking these to optogenetic domains offers a general approach for spatiotemporal control of native transcriptional events

    Dendritic LSm1/CBP80-mRNPs mark the early steps of transport commitment and translational control

    Get PDF
    Messenger RNA (mRNA) transport to neuronal dendrites is crucial for synaptic plasticity, but little is known of assembly or translational regulation of dendritic messenger ribonucleoproteins (mRNPs). Here we characterize a novel mRNP complex that is found in neuronal dendrites throughout the central nervous system and in some axonal processes of the spinal cord. The complex is characterized by the LSm1 protein, which so far has been implicated in mRNA degradation in nonneuronal cells. In brain, it associates with intact mRNAs. Interestingly, the LSm1-mRNPs contain the cap-binding protein CBP80 that associates with (pre)mRNAs in the nucleus, suggesting that the dendritic LSm1 complex has been assembled in the nucleus. In support of this notion, neuronal LSm1 is partially nuclear and inhibition of mRNA synthesis increases its nuclear localization. Importantly, CBP80 is also present in the dendrites and both LSm1 and CBP80 shift significantly into the spines upon stimulation of glutamergic receptors, suggesting that these mRNPs are translationally activated and contribute to the regulated local protein synthesis

    Rapid synaptic potentiation within the anterior cingulate cortex mediates trace fear learning

    No full text
    Abstract Although the cortex has been extensively studied in long-term memory storage, less emphasis has been placed on immediate cortical contributions to fear memory formation. AMPA receptor plasticity is strongly implicated in learning and memory, and studies have identified calcium permeable AMPA receptors (CP-AMPARs) as mediators of synaptic strengthening. Trace fear learning engages the anterior cingulate cortex (ACC), but whether plastic events occur within the ACC in response to trace fear learning, and whether GluN2B subunits are required remains unknown. Here we show that the ACC is necessary for trace fear learning, and shows a rapid 20% upregulation of membrane AMPA receptor GluA1 subunits that is evident immediately after conditioning. Inhibition of NMDA receptor GluN2B subunits during training prevented the upregulation, and disrupted trace fear memory retrieval 48 h later. Furthermore, intra-ACC injections of the CP-AMPAR channel antagonist, 1-naphthylacetyl spermine (NASPM) immediately following trace fear conditioning blocked 24 h fear memory retrieval. Accordingly, whole cell patch clamp recordings from c-fos positive and c-fos negative neurons within the ACC in response to trace fear learning revealed an increased sensitivity to NASPM in recently activated neurons that was reversed by reconsolidation update extinction. Our results suggest that trace fear learning is mediated through rapid GluN2B dependent trafficking of CP-AMPARs, and present in vivo evidence that CP-AMPAR activity within the ACC immediately after conditioning is necessary for subsequent memory consolidation processes.</p

    Rapid synaptic potentiation within the anterior cingulate cortex mediates trace fear learning

    No full text
    Abstract Although the cortex has been extensively studied in long-term memory storage, less emphasis has been placed on immediate cortical contributions to fear memory formation. AMPA receptor plasticity is strongly implicated in learning and memory, and studies have identified calcium permeable AMPA receptors (CP-AMPARs) as mediators of synaptic strengthening. Trace fear learning engages the anterior cingulate cortex (ACC), but whether plastic events occur within the ACC in response to trace fear learning, and whether GluN2B subunits are required remains unknown. Here we show that the ACC is necessary for trace fear learning, and shows a rapid 20% upregulation of membrane AMPA receptor GluA1 subunits that is evident immediately after conditioning. Inhibition of NMDA receptor GluN2B subunits during training prevented the upregulation, and disrupted trace fear memory retrieval 48 h later. Furthermore, intra-ACC injections of the CP-AMPAR channel antagonist, 1-naphthylacetyl spermine (NASPM) immediately following trace fear conditioning blocked 24 h fear memory retrieval. Accordingly, whole cell patch clamp recordings from c-fos positive and c-fos negative neurons within the ACC in response to trace fear learning revealed an increased sensitivity to NASPM in recently activated neurons that was reversed by reconsolidation update extinction. Our results suggest that trace fear learning is mediated through rapid GluN2B dependent trafficking of CP-AMPARs, and present in vivo evidence that CP-AMPAR activity within the ACC immediately after conditioning is necessary for subsequent memory consolidation processes
    corecore