131 research outputs found

    Computational methods for genome and proteome annotation

    Get PDF
    Il progresso tecnologico nel campo della biologia molecolare, pone la comunità scientifica di fronte all’esigenza di dare un’interpretazione all’enormità di sequenze biologiche che a mano a mano vanno a costituire le banche dati, siano esse proteine o acidi nucleici. In questo contesto la bioinformatica gioca un ruolo di primaria importanza. Un nuovo livello di possibilità conoscitive è stato introdotto con le tecnologie di Next Generation Sequencing (NGS), per mezzo delle quali è possibile ottenere interi genomi o trascrittomi in poco tempo e con bassi costi. Tra le applicazioni del NGS più rilevanti ci sono senza dubbio quelle oncologiche che prevedono la caratterizzazione genomica di tessuti tumorali e lo sviluppo di nuovi approcci diagnostici e terapeutici per il trattamento del cancro. Con l’analisi NGS è possibile individuare il set completo di variazioni che esistono nel genoma tumorale come varianti a singolo nucleotide, riarrangiamenti cromosomici, inserzioni e delezioni. Va però sottolineato che le variazioni trovate nei geni vanno in ultima battuta osservate dal punto di vista degli effetti a livello delle proteine in quanto esse sono le responsabili più dirette dei fenotipi alterati riscontrabili nella cellula tumorale. L’expertise bioinformatica va quindi collocata sia a livello dell’analisi del dato prodotto per mezzo di NGS ma anche nelle fasi successive ove è necessario effettuare l’annotazione dei geni contenuti nel genoma sequenziato e delle relative strutture proteiche che da esso sono espresse, o, come nel caso dello studio mutazionale, la valutazione dell’effetto della variazione genomica. È in questo contesto che si colloca il lavoro presentato: da un lato lo sviluppo di metodologie computazionali per l’annotazione di sequenze proteiche e dall’altro la messa a punto di una pipeline di analisi di dati prodotti con tecnologie NGS in applicazioni oncologiche avente come scopo finale quello della individuazione e caratterizzazione delle mutazioni genetiche tumorali a livello proteico.The technological advancement in the molecular biology field is strongly dependent from the availability of bioinformatics support in order to manage and to interpret the very large amount of biological sequences produced. A new level of knowledge is derivable from the Next Generation Sequencing technology (NGS), that allows to obtain whole genomes and transcriptomes in few days and with low costs. Cancer research is one of the most relevant applications of NGS technology. With the NGS analysis is possible to perform the genomic characterization of tumors highlighting all the detectable mutations such as single nucleotide variants, chromosomal rearrangements, insertions and deletions, in order to develop new diagnostic, prognostic and therapeutic approaches in the cancer treatment. However, the genetic variation found in the samples must be analyzed at protein level since they directly alter the tumor cell phenotype. The bioinformatic expertise is essential to implement the NGS data analysis and also to perform the annotation of the genes emerging from the sequenced genome and of the protein expressed by it. In this work of thesis two computational methods for protein annotation have been developed (prediction of targeting and signal peptides); moreover we will introduce a bioinformatic pipeline to analyze NGS data and to annotate the genetic variants in the cancer genomic research

    miRNA Expression May Have Implications for Immunotherapy in PDGFRA Mutant GISTs

    Get PDF
    Gastrointestinal stromal tumors; MiRNAs; MicroRNAsTumores del estroma gastrointestinal; MiARN; MicroARNTumors de l'estroma gastrointestinal; MiARN; MicroARNGastrointestinal stromal tumors (GISTs) harboring mutations in the PDGFRA gene occur in only about 5–7% of patients. The most common PDGFRA mutation is exon 18 D842V, which is correlated with specific clinico-pathological features compared to the other PDGFRA mutated GISTs. Herein, we present a miRNA expression profile comparison of PDGFRA D842V mutant GISTs and PDGFRA with mutations other than D842V (non-D842V). miRNA expression profiling was carried out on 10 patients using a TLDA miRNA array. Then, miRNA expression was followed by bioinformatic analysis aimed at evaluating differential expression, pathway enrichment, and miRNA-mRNA networks. We highlighted 24 differentially expressed miRNAs between D842V and non-D842V GIST patients. Pathway enrichment analysis showed that deregulated miRNAs targeted genes that are mainly involved in the immune response pathways. The miRNA-mRNA networks highlighted a signature of miRNAs/mRNA that could explain the indolent behavior of the D842V mutated GIST. The results highlighted a different miRNA fingerprint in PDGFRA D842V GISTs compared to non-D842Vmutated patients, which could explain the different biological behavior of this GIST subset.The study was supported by a financial contribution of the Department of Pharmacy and Biotechnology (RFO) to SA and of the AIG (Associazione Italiana GIST) to MA

    Feeding broiler chickens with arginine above recommended levels: effects on growth performance, metabolism, and intestinal microbiota

    Get PDF
    BackgroundArginine is an essential amino acid for chickens and feeding diets with arginine beyond the recommended levels has been shown to influence the growth performance of broiler chickens in a positive way. Nonetheless, further research is required to understand how arginine supplementation above the widely adopted dosages affects metabolism and intestinal health of broilers. Therefore, this study was designed to assess the effects of arginine supplementation (i.e., total arginine to total lysine ratio of 1.20 instead of 1.06-1.08 recommended by the breeding company) on growth performance of broiler chickens and to explore its impacts on the hepatic and blood metabolic profiles, as well as on the intestinal microbiota. For this purpose, 630 one-day-old male Ross 308 broiler chicks were assigned to 2 treatments (7 replicates each) fed a control diet or a crystalline L-arginine-supplemented diet for 49 d.ResultsCompared to control birds, those supplemented with arginine performed significantly better exhibiting greater final body weight at D49 (3778 vs. 3937 g; P < 0.001), higher growth rate (76.15 vs. 79.46 g of body weight gained daily; P < 0.001), and lower cumulative feed conversion ratio (1.808 vs. 1.732; P < 0.05). Plasma concentrations of arginine, betaine, histidine, and creatine were greater in supplemented birds than in their control counterparts, as were those of creatine, leucine and other essential amino acids at the hepatic level. In contrast, leucine concentration was lower in the caecal content of supplemented birds. Reduced alpha diversity and relative abundance of Firmicutes and Proteobacteria (specifically Escherichia coli), as well as increased abundance of Bacteroidetes and Lactobacillus salivarius were found in the caecal content of supplemented birds.ConclusionsThe improvement in growth performance corroborates the advantages of supplementing arginine in broiler nutrition. It can be hypothesized that the performance enhancement found in this study is associated with the increased availability of arginine, betaine, histidine, and creatine in plasma and the liver, as well as to the ability of extra dietary arginine to potentially ameliorate intestinal conditions and microbiota of supplemented birds. However, the latter promising property, along with other research questions raised by this study, deserve further investigations

    SDHC methylation in gastrointestinal stromal tumors (GIST): a case report

    Get PDF
    Gastrointestinal stromal tumors (GIST) recently have been recognized as a genetically and biologically heterogeneous disease. In addition to KIT or PDGFRA mutated GIST, mutational inactivation of succinate dehydrogenase (SDH) subunits has been detected in the KIT/PDGFRA wild-type subgroup, referred to as SDH deficient (dSDH). Even though most dSDH GIST harbor mutations in SDHx subunit genes, some are SDHx wild type. Epigenetic regulation by DNA methylation of CpG islands recently has been found to be an alternative mechanism underlying the lack of SDH complex in GIST

    Mechanisms of resistance to a PI3K inhibitor in gastrointestinal stromal tumors: an omic approach to identify novel druggable targets

    Get PDF
    Background: Gastrointestinal stromal tumors (GISTs) represent a worldwide paradigm of target therapy. The introduction of tyrosine kinase inhibitors has deeply changed the prognosis of GIST patients, however, the majority of them acquire secondary mutations and progress. Unfortunately, besides tyrosine-kinase inhibitors, no other therapeutic options are available. Therefore, it is mandatory to identify novel molecules and/or strategies to overcome the inevitable resistance. In this context, after promising preclinical data on the novel PI3K inhibitor BYL719, the NCT01735968 trial in GIST patients who had previously failed treatment with imatinib and sunitinib started. BYL719 has attracted our attention, and we comprehensively characterized genomic and transcriptomic changes taking place during resistance. Methods: For this purpose, we generated two in vitro GIST models of acquired resistance to BYL719 and performed an omic-based analysis by integrating RNA-sequencing, miRNA, and methylation profiles in sensitive and resistant cells. Results: We identified novel epigenomic mechanisms of pharmacological resistance in GISTs suggesting the existence of pathways involved in drug resistance and alternatively acquired mutations. Therefore, epigenomics should be taken into account as an alternative adaptive mechanism. Conclusion: Despite the fact that currently we do not have patients in treatment with BYL719 to verify this hypothesis, the most intriguing result is the involvement of H19 and PSTA1 in GIST resistance, which might represent druggable targets

    miRNA Expression May Have Implications for Immunotherapy in PDGFRA Mutant GISTs

    Get PDF
    Gastrointestinal stromal tumors (GISTs) harboring mutations in the PDGFRA gene occur in only about 5-7% of patients. The most common PDGFRA mutation is exon 18 D842V, which is correlated with specific clinico-pathological features compared to the other PDGFRA mutated GISTs. Herein, we present a miRNA expression profile comparison of PDGFRA D842V mutant GISTs and PDGFRA with mutations other than D842V (non-D842V). miRNA expression profiling was carried out on 10 patients using a TLDA miRNA array. Then, miRNA expression was followed by bioinformatic analysis aimed at evaluating differential expression, pathway enrichment, and miRNA-mRNA networks. We highlighted 24 differentially expressed miRNAs between D842V and non-D842V GIST patients. Pathway enrichment analysis showed that deregulated miRNAs targeted genes that are mainly involved in the immune response pathways. The miRNA-mRNA networks highlighted a signature of miRNAs/mRNA that could explain the indolent behavior of the D842V mutated GIST. The results highlighted a different miRNA fingerprint in PDGFRA D842V GISTs compared to non-D842Vmutated patients, which could explain the different biological behavior of this GIST subset

    Exploring the application of Corynebacterium glutamicum single cell protein in the diet of flathead grey mullet (Mugil cephalus): effects on growth performance, digestive enzymes activity and gut microbiota

    Get PDF
    The capacity of utilising a single cell protein (SCP) ingredient coming from Corynebacterium glutamicum was assessed on adult grey mullet (Mugil cephalus) reared in captive conditions. The experiment was carried out using triplicate groups of grey mullet of 68 g average initial body weight. Three diets, SCP0, SCP10 and SCP20 with increasing inclusion of SCP (0%, 10% and 20%) in substitution of soybean, poultry and fish meal were formulated to contain 30% protein, 10% fat and 18.5 Mj/kg feed of digestible energy. After 113 days, fish fed SCP diets presented significantly lower growth performance and a significant lower activity of the alkaline proteases and aminopeptidases compared to fish fed diet without SCP inclusion. Gut microbiota appeared modulated by SCP inclusion being dominated at the phylum level by Fusobacteria in fish fed SCP0 (51.1%), while in fish fed SCP10 (67.3%) and SCP20 (53.2%) Proteobacteria was dominant. Data evinces a deficiency in the protein utilisation as a cause of the poor growth performance in fish fed the SCP diets. A hypothesis has been proposed that an incomplete SCP cell-wall lysis accounts for this outcome because of the particular organisation of the digestive system of grey mullet (which lack of an acidic stomach digestion) and the failing in the development of a functional gizzard (no access to sand in captive conditions). Even though the outcomes of this research were quite unexpected, they will improve our knowledge on the digestive system of flathead grey mullet and provide some theoretical basis for an improved development of low FM and SBM aquafeed for the species.This research was undertaken as a part of the FEAMP 2014-2020 project, action 3A. Pilot project for the application of techniques and methods aimed at the enhancement and diversification of fish products from Valliculture financed by Emilia Romagna region. Analyses of digestive enzymes conducted at IRTA were supported by the ACUISOST project funded by the Ministerio de Agricultura, Pesca y Alimentación from the Spanish Government and EU Next Generation funds (PRTR).info:eu-repo/semantics/publishedVersio

    Whole exome sequencing (WES) on formalin-fixed, paraffin-embedded (FFPE) tumor tissue in gastrointestinal stromal tumors (GIST)

    Get PDF
    Next generation sequencing (NGS) technology has been rapidly introduced into basic and translational research in oncology, but the reduced availability of fresh frozen (FF) tumor tissues and the poor quality of DNA extracted from formalin-fixed, paraffin-embedded (FFPE) has significantly impaired this process in the field of solid tumors. To evaluate if data generated from FFPE material can be reliably produced and potentially used in routine clinical settings, we performed whole exome sequencing (WES) from tumor samples of Gastrointestinal stromal tumors (GIST), either extracted FF or FFPE, and from matched normal DNA

    Yeast-extracted nucleotides and nucleic acids as promising feed additives for European sea bass (Dicentrarchus labrax) juveniles

    Get PDF
    Nowadays functional ingredients have a significant potential for improving current low fish meal (FM) aquafeed formulation in sustaining growth and enhancing animal robustness for Mediterranean aquaculture. Among them, nucleotides (NT) and nucleic acids (NA) drew attention for their application in the last two decades. NT are organic molecules involved in many life-supporting pathways, and are the building blocks of NA, which stand as genetic repositories. NT are naturally present in organic ingredients, and among them FM is known to be one of the highest NT sources. When this NT source is seriously limited, fish might be under the minimum NT requirements, especially in fast growing life stages of carnivorous species. Hence, a trial on European sea bass juveniles was carried out, testing two dietary FM levels (FM10, FM20 as 10% and 20% FM, respectively) supplemented with 500 mg kg-1 yeast-originate NT or NA dose over 80 days. Thereafter, fish were exposed to one week of sub-optimal thermal and dissolved oxygen condition (30°C and 4.0 mg/L O2) to further explore the effect of NT and NA inclusion on immune response and gut microbiome alteration. At the end of the growth period NT increased feed intake at both FM dietary levels. FM20 combined with NA and NT further improved growth performance, enhancing lipid efficiency and increased anti-inflammatory TGF-b. After sub-optimal environmental conditions both NT and NA exerted prebiotic functions on gut microbiome by promoting beneficial lactic acid bacteria such as Weissella and Leuconostoc. At the same time NT in 10% FM diet increased the abundance of Bacillus taxon. In conclusion, the combination of NT/NA included at 500 mg kg-1 was able to promote growth when included in 20% FM level, assuming higher nutritional NT requirement when combined with 10% FM. On the other hand, NT/NA added in 10% FM upregulate proinflammatory IL-1b and favor beneficial gut bacterial taxa

    Mutational analysis of ribosomal proteins in a cohort of pediatric patients with T-cell acute lymphoblastic leukemia reveals Q123R, a novel mutation in RPL10

    Get PDF
    T-cell acute lymphoblastic leukemia (T-ALL) is a subtype of ALL involving the malignant expansion of T-cell progenitors. It is driven by a number of different possible genetic lesions, including mutations in genes encoding for ribosomal proteins (RPs). These are structural constituents of ribosomes, ubiquitous effectors of protein synthesis. Albeit the R98S mutation in RPL10, recurring with a higher frequency among RP mutations, has been extensively studied, less is known about the contribution of mutations occurring in other RPs. Alterations affecting translational machinery may not be well tolerated by cells, and there may be a selective pressure that determines the emergence of mutations with a compensatory effect. To explore this hypothesis, we sequenced the exomes of a cohort of 37 pediatric patients affected by T-ALL, and analyzed them to explore the co-occurrence of mutations in genes involved in ribosome biogenesis (including RPs) and translational control, and in known T-ALL driver genes. We found that some of the mutations in these sub-classes of genes tend to cluster together in different patients, indicating that their co-occurrence may confer some kind of advantage to leukemia cells. In addition, our sequencing highlighted the presence of a novel mutation in RPL10, namely the Q123R, which we found associated with a defect in protein synthesis. Our findings indicate that genetic alterations involving ribosome biogenesis and translational control should be carefully considered in the context of precision medicine in T-ALL
    • …
    corecore