11,291 research outputs found

    Anomalous proximity effects at the interface of s and s+- superconductors

    Full text link
    We study proximity effects close to a boundary between s and s+- superconductors. Frustration, caused by interaction of the s-wave gap parameter with the opposite-sign gaps of s+- superconductor, leads to several anomalous features. In the case of strong frustration a nontrivial time-reversal-symmetry breaking (TRSB) state, with nonzero phase angles between all gap parameters, is possible. In a more typical state, the s-wave order parameter is aligned with one of the s+- gaps. The other (anti-aligned) gap induces negative feature in the s-wave density of states, which can serve as a fingerprint of s+- state. Another consequence of the frustration is an extended region in the parameter space in which s-wave superconductivity is suppressed, despite being in contact with nominally stronger superconductor. This negative proximity effect is always present for the TRSB state, but extends even into the aligned states. We study these effects within a simple microscopic model assuming dirty limit in all bands, which allows us to model the system in terms of minimum number of the most relevant parameters. The described anomalous features provide a route to establishing the possible s+- state in the iron-based superconductorsComment: 19 pages, 11 figures, expanded Introduction, 9 new reference

    Revisiting noninteracting string partition functions in Rindler space

    Get PDF
    We revisit non-interacting string partition functions in Rindler space by summing over fields in the spectrum. In field theory, the total partition function splits in a natural way in a piece that does not contain surface terms and a piece consisting of solely the so-called edge states. For open strings, we illustrate that surface contributions to the higher spin fields correspond to open strings piercing the Rindler origin, unifying the higher spin surface contributions in string language. For closed strings, we demonstrate that the string partition function is not quite the same as the sum over the partition functions of the fields in the spectrum: an infinite overcounting is present for the latter. Next we study the partition functions obtained by excluding the surface terms. Using recent results of JHEP 1505 (2015) 106, this construction, first done by Emparan, can be put on much firmer ground. We generalize to type II and heterotic superstrings and demonstrate modular invariance. All of these exhibit an IR divergence that can be interpreted as a maximal acceleration close to the black hole horizon. Ultimately, since these partition functions are only part of the full story, divergences here should not be viewed as a failure of string theory: maximal acceleration is a feature of a faulty treatment of the higher spin fields in the string spectrum. We comment on the relevance of this to Solodukhin's recent proposal. A possible link with the firewall paradox is apparent.Comment: 33 pages, v2: added several clarifications including a section on the difference between closed strings and the sum-of-fields approach, matches published versio

    The long string at the stretched horizon and the entropy of large non-extremal black holes

    Get PDF
    We discuss how long strings can arise at the stretched horizon and how they can account for the Bekenstein-Hawking entropy. We use the thermal scalar field theory to derive the asymptotic density of states and corresponding stress tensor of a microcanonical long string gas in Rindler space. We show that the equality of the Hagedorn and Hawking temperatures gives rise to the tree-level entropy of large black holes in accordance with the Bekenstein-Hawking-Wald formula.Comment: 19 pages, v2: added discussion on rotating black holes, matches published versio

    Perturbative String Thermodynamics near Black Hole Horizons

    Get PDF
    We provide further computations and ideas to the problem of near-Hagedorn string thermodynamics near (uncharged) black hole horizons, building upon our earlier work JHEP 1403 (2014) 086. The relevance of long strings to one-loop black hole thermodynamics is emphasized. We then provide an argument in favor of the absence of α\alpha'-corrections for the (quadratic) heterotic thermal scalar action in Rindler space. We also compute the large kk limit of the cigar orbifold partition functions (for both bosonic and type II superstrings) which allows a better comparison between the flat cones and the cigar cones. A discussion is made on the general McClain-Roth-O'Brien-Tan theorem and on the fact that different torus embeddings lead to different aspects of string thermodynamics. The black hole/string correspondence principle for the 2d black hole is discussed in terms of the thermal scalar. Finally, we present an argument to deal with arbitrary higher genus partition functions, suggesting the breakdown of string perturbation theory (in gsg_s) to compute thermodynamical quantities in black hole spacetimes.Comment: 51 pages, v2: matches published versio

    Hagedorn temperature and physics of black holes

    Full text link
    A mini-review devoted to some implications of the Hagedorn temperature for black hole physics. The existence of a limiting temperature is a generic feature of string models. The Hagedorn temperature was introduced first in the context of hadronic physics. Nowadays, the emphasis is shifted to fundamental strings which might be a necessary ingredient to obtain a consistent theory of black holes. The point is that, in field theory, the local temperature close to the horizon could be arbitrarily high, and this observation is difficult to reconcile with the finiteness of the entropy of black holes. After preliminary remarks, we review our recent attempt to evaluate the entropy of large black holes in terms of fundamental strings. We also speculate on implications for dynamics of large-N gauge theories arising within holographic models.Comment: 6 pages, ICNFP2015 Conference Proceeding

    Low-rate coding using incremental redundancy for GLDPC codes

    Get PDF
    In this paper we propose a low-rate coding method, suited for application-layer forward error correction. Depending on channel conditions, the coding scheme we propose can switch from a fixed-rate LDPC code to various low-rate GLDPC codes. The source symbols are first encoded by using a staircase or triangular LDPC code. If additional symbols are needed, the encoder is then switched to the GLDPC mode and extra-repair symbols are produced, on demand. In order to ensure small overheads, we consider irregular distributions of extra-repair symbols optimized by density evolution techniques. We also show that increasing the number of extra-repair symbols improves the successful decoding probability, which becomes very close to 1 for sufficiently many extra-repair symbols

    Random tensor models in the large N limit: Uncoloring the colored tensor models

    Full text link
    Tensor models generalize random matrix models in yielding a theory of dynamical triangulations in arbitrary dimensions. Colored tensor models have been shown to admit a 1/N expansion and a continuum limit accessible analytically. In this paper we prove that these results extend to the most general tensor model for a single generic, i.e. non-symmetric, complex tensor. Colors appear in this setting as a canonical book-keeping device and not as a fundamental feature. In the large N limit, we exhibit a set of Virasoro constraints satisfied by the free energy and an infinite family of multicritical behaviors with entropy exponents \gamma_m=1-1/m.Comment: 15 page

    Electronic properties of mesoscopic graphene structures: charge confinement and control of spin and charge transport

    Full text link
    This brief review discusses electronic properties of mesoscopic graphene-based structures. These allow controlling the confinement and transport of charge and spin; thus, they are of interest not only for fundamental research, but also for applications. The graphene-related topics covered here are: edges, nanoribbons, quantum dots, pnpn-junctions, pnppnp-structures, and quantum barriers and waveguides. This review is partly intended as a short introduction to graphene mesoscopics.Comment: 47 pages, 26 figures, 11 tables; for copyright reasons Fig.23 of this preprint and of the published review are not identica

    String Theory in Polar Coordinates and the Vanishing of the One-Loop Rindler Entropy

    Get PDF
    We analyze the string spectrum of flat space in polar coordinates, following the small curvature limit of the SL(2,R)/U(1)SL(2,\mathbb{R})/U(1) cigar CFT. We first analyze the partition function of the cigar itself, making some clarifications of the structure of the spectrum that have escaped attention up to this point. The superstring spectrum (type 0 and type II) is shown to exhibit an involution symmetry, that survives the small curvature limit. We classify all marginal states in polar coordinates for type II superstrings, with emphasis on their links and their superconformal structure. This classification is confirmed by an explicit large τ2\tau_2 analysis of the partition function. Next we compare three approaches towards the type II genus one entropy in Rindler space: using a sum-over-fields strategy, using a Melvin model approach and finally using a saddle point method on the cigar partition function. In each case we highlight possible obstructions and motivate that the correct procedures yield a vanishing result: S=0S=0. We finally discuss how the QFT UV divergences of the fields in the spectrum disappear when computing the free energy and entropy using Euclidean techniques.Comment: 58 pages + appendices, v2: typos corrected, matches published versio
    corecore