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Abstract: We provide further computations and ideas to the problem of near-Hagedorn

string thermodynamics near (uncharged) black hole horizons, building upon our earlier

work [1]. The relevance of long strings to one-loop black hole thermodynamics is em-

phasized. We then provide an argument in favor of the absence of α′-corrections for the

(quadratic) heterotic thermal scalar action in Rindler space. We also compute the large k

limit of the cigar orbifold partition functions (for both bosonic and type II superstrings)

which allows a better comparison between the flat cones and the cigar cones. A discussion

is made on the general McClain-Roth-O’Brien-Tan theorem and on the fact that different

torus embeddings lead to different aspects of string thermodynamics. The black hole/string

correspondence principle for the 2d black hole is discussed in terms of the thermal scalar.

Finally, we present an argument to deal with arbitrary higher genus partition functions,

suggesting the breakdown of string perturbation theory (in gs) to compute thermodynam-

ical quantities in black hole spacetimes.
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1 Introduction

String theory in a black hole background is reasonably understood for extremal black holes

(where the microstates can be identified as perturbative string states, solitons and branes

within string theory).1 Non-extremal black holes on the other hand are (in spite of sev-

eral influential ideas) still largely understood on a qualitative level only. The main line of

thought that pervades the literature on this topic is the idea that a long string(s) should

give the necessary microstructure to such black holes.2 In flat space, it was argued for many

years ago that the near-Hagedorn string gas should behave as a few long strings whose spa-

tial form describes random walks in the ambient space [4][5][6][7][8][9][10]. For the black

hole case, this long string should also account for the black hole membrane where (following

some early ideas) the black hole degrees of freedom are stored. The picture that emerges is

that a (uncharged) black hole is surrounded by a long string at string length distance from

the event horizon. The fact that strings tend to elongate when approaching the horizon

was shown from a single string perspective in [11][12][13][14]. The study of the canonical

ensemble of a string gas surrounding a black hole horizon was also started around the same

period [15][16]. In [1] we combined thermal scalar field theory computations with the ex-

plicit random walk picture of the long string [17][18] to provide a realization of Susskind’s

picture in the canonical ensemble. We arrived at the conclusion that the Hawking tempera-

ture equals the Hagedorn temperature and hence in this sense the long string phase prevails.

The main goal of this paper is to further analyze some of the more puzzling parts of this

story.

The paper is organized as follows. Section 2 contains a review of the results presented in

[1] in which we will provide more details on the puzzles that were left open in that work.

Then, as an appetizer, in section 3 we discuss the role and relevance of long strings in one-

loop black hole thermodynamics. In particular we argue that a truncation to the one-loop

thermodynamics of only the massless modes is incapable of approximating the one-loop

string result. Then in section 4, we discuss Rindler space for the heterotic string, a prob-

lem that was left open in [1]. We noted there that it appears that the thermal scalar action

for the heterotic string in Euclidean Rindler space without any α′-corrections is capable

of reproducing expected results. Here we present an argument in favor of this. In section

5, we present a detailed comparison of the large k limit of the bosonic and type II super-

string cigar orbifold partition functions. This generalizes the comparison done in [1]. Next,

section 6 provides some ideas on how the different approaches to string thermodynamics

fit together with a special emphasis on the difference between the modular strip and the

fundamental domain. We also discuss subtleties on torus embeddings that are expected to

correspond to the Susskind-Uglum interactions on the horizon [13]. After that, in section

1See e.g. [2] for the earliest account of this. The vast amount of literature that follows is too numerous

to be cited here.
2A recent interesting paper [3] has some suggestive ideas concerning the precise way in which the mi-

crostructure is accounted for by long strings.
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7, we make some comments on the string/black hole transition in the SL(2,R)/U(1) cigar

CFT from a thermal scalar perspective. Finally, in section 8, we present an analysis of

higher genus corrections (closely following [19]). The crux of the matter is that it appears

that the entire genus expansion should be resummed, even though for each fixed genus a

random walk picture (with self-intersections) emerges.

Appendix A contains the cigar CFT string spectrum. Several technical calculations on the

McClain-Roth-O’Brien-Tan theorem in curved spacetime, the cigar CFT and a discussion

on normalizable and non-normalizable operators are given in the remaining appendices.

2 Recap of the thermal scalar near black holes

High temperature string theory is known to exhibit divergences in its one-loop thermo-

dynamical quantities due to the enormous degeneracy of high-energy states. This critical

temperature is called the Hagedorn temperature. It can be related to a string state on

the thermal manifold (Wick rotated background with periodically identified temporal di-

mension) that becomes massless precisely at this temperature: this state is singly wound

(w = ±1) around the thermal direction and is called the thermal scalar.

In [1] we set out to study this question for black hole geometries where the thermal circle

is cigar-like and pinches off at the horizon. We were interested in finding the thermal

spectrum on Euclidean Rindler space (the near-horizon approximation to a large class of

(uncharged) black holes):

ds2 =

(
ρ2

α′

)
dτ2 + dρ2 + dx2

⊥. (2.1)

In this geometry, one identifies τ ∼ τ + 2π
√
α′ to avoid a conical singularity at the origin

(horizon of the black hole); we call this (inverse) temperature βR. To find the thermal

spectrum, in [1] we have followed the strategy proposed by [20][21][22] to take the small

curvature (large k) limit of the SL(2,R)/U(1) cigar CFT to reach Euclidean Rindler space.

The cigar background one starts with is of the following form:

ds2 =
α′k

4

(
dr2 + 4 tanh2

(r
2

)
dθ2
)
, (2.2)

Φ = − ln cosh
(r

2

)
. (2.3)

For bosonic strings, this background receives corrections in α′, but for type II superstrings it

is α′-exact. The string spectrum on this background was determined some time ago, either

by looking at the poles of correlation functions [23][24][25] or by exactly computing the torus

path integral [26][27]. Our strategy in [1] was to look at how this string spectrum behaves

in the large k limit. Besides looking into the conformal weights of the primaries, we also

considered the geometrical interpretation of the spectrum as follows. String fluctuations

on this background satisfy the on-shell relation (for type II superstrings):

(L0 + L̄0 − 1) |T 〉 = 0. (2.4)
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It is known that one can rewrite the operators L0 and L̄0 in terms of the Laplacian on the

coset manifold [28]. The fluctuation hence satisfies the (minimally coupled) Klein-Gordon

equation in a curved spacetime in the above metric and dilaton background.

Without going into details, also a dual background was obtained [28] whose geometry

determines what winding strings (around the cigar) experience. For type II superstrings,

the equation of motion for winding strings is derived from the following action (L =
√
kα′,

ρ =
√
α′k
2 r)

S =

∫ +∞

0
dρ
L

2
sinh

(
2

L
ρ

)[
|∂ρT |2 + w2 β2

4π2α′2
tanh2

( ρ
L

)
TT ∗ − 2

α′
TT ∗

]
, (2.5)

and this is indeed the naive lowest order in α′ action for non-self-interacting fluctuations

of winding strings T . The large k limit (keeping ρ fixed)gives us then3

S =

∫ +∞

0
dρρ

[
|∂ρT |2 + w2 β2ρ2

4π2α′3
TT ∗ − 2

α′
TT ∗

]
. (2.6)

Taking k large decreases the curvature and flattens the cigar.

The w = ±1 state is special since it determines the dominant near-Hagedorn thermody-

namics of the string gas. The reason is that this mode is temperature-dependent and

expected to be the least massive of the winding modes. Taking the above (non-interacting)

field theory of the thermal scalar and integrating by parts, one can write it schematically

as

Sth.sc. ∼
∫
dV e−2Φ

√
GT ∗ÔT, (2.7)

from which the dominant part of the free energy follows as:

βF ≈ TrlnÔ. (2.8)

For a discrete spectrum of Ô, we obtain

βF ≈
∑
n

lnλn (2.9)

and it is the lowest eigenmode of Ô that determines the critical behavior. It was found

that in the Euclidean Rindler geometry (2.1) (at β = 2π
√
α′), the lowest eigenmode has

the eigenmode and eigenvalue

ψ0 ∝ exp

(
− ρ2

2α′

)
, λ0 = 0. (2.10)

This means the thermal scalar mode is localized at string length from the horizon and the

Rindler temperature (needed to avoid a conical singularity in the geometry) is precisely

equal to the Hagedorn temperature βH = βR. Since the Hagedorn temperature is associ-

ated to the random walking phenomenon of the long string(s) which is identified with the

3A rescaling of β has been performed at this step. See [1] for details.
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thermal scalar paths, we deduce that the most dominant contribution of the free energy at

one loop is given by a random walk at string length from the horizon.

For geometries with horizons, in principle the temperature is fixed and one does not have

the freedom to change it as innocently as in for instance flat space. String theory has the

added difficulty that it is unclear how to deal with general conical spaces.

However, the field theory of the thermal scalar does not have this difficulty and one is free

to change the temperature. For specific temperatures β = 2π
√
α′

N (with N ∈ N), string

theory manages to be on-shell and one can make sense of string theory on such spaces. We

found that the thermal scalar found on such spaces, agrees with simply taking β = 2π
√
α′

N

in the thermal scalar action (2.6) (both for bosonic and for type II superstrings). For

heterotic strings, our understanding is more rudimentary although the heterotic analog of

(2.6) does give the correct dominant mode. We hope to fill this gap in what follows.

A further puzzling feature is that modes that have |w| > 1 apparently are not even present

in the thermal spectrum. This raises some questions regarding the thermodynamic interpre-

tation of this theory, as usually these are attributed to corrections to Maxwell-Boltzmann

statistics [29].

Another peculiar part of this story is that (for fully compact spacetimes, as we are in-

structed to study in thermodynamics), the thermodynamical quantities in principle diverge

at the Hagedorn temperature (which equals the Rindler or Hawking temperature). This

implies for instance an infinite free energy. One might think that higher genus corrections

to the free energy could cure this behavior. In this paper, we will explore this feature more

thoroughly.

Our goal in this paper is to further utilize the link between the cigar model and Euclidean

Rindler space to understand better all of these strange features.

3 Relevance of long strings for black hole thermodynamics

First let us ask a general question: can one ignore the massive string modes when com-

puting loop corrections to thermodynamical quantities in black hole spacetimes? Hence

we wish to contemplate whether approximating the one loop string free energy by only the

free energy of the massless modes (in the Lorentzian spectrum) (i.e. gravitons, photons

etc.) is a good approximation.

String loop corrections to black hole thermodynamics have a long history riddled with con-

troversy, see e.g. [30][11][15][16][31][32][33][34]. In general one expects higher worldsheet

corrections to be neglible when considering the exterior of black holes. The argument is

well-known: higher worldsheet corrections (or massive string modes) manifest themselves

in the low energy effective action as corrections of higher order in α′/R2 with R some

curvature radius. The curvature outside a (large) black hole horizon is much smaller than

the inverse string length. Hence these corrections are very small and can be neglected,

suggesting the massless modes give the main contribution to observables for large black

holes.
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The situation is completely different however when considering one-loop thermodynamical

quantities. This can be appreciated from different perspectives.

A first primitive argument is as follows. We noted previously in [1] that for Rindler space

plus a fully compact remainder, the free energy itself diverges as βF = ln(β − βH) where

βH = βHawking and one should set β equal to the Hawking temperature as well in the end.

This implies F diverges on the nose. This is obviously not achieved by only considering

the massless fields around the black hole.4

For a different argument, consider the thermal partition function. The radius of the ther-

mal circle is an extra curvature parameter. We have explicitly demonstrated elsewhere

[1] that higher order α′ corrections constructed with the inverse temperature β are not

subdominant for thermal winding modes.

A more physical point of view can be given on the Lorentzian signature manifold.5 To

that effect, let us first look at the formulas for the flat space string. The free energy of a

(bosonic) field of mass m in D + 1 dimensions is given by

βF = V

∫
dDk

(2π)D
ln
(

1− e−β
√
k2+m2

)
. (3.1)

Clearly a higher mass field has a lower free energy. In the large mass limit, we can approx-

imate

ln(1− x) ≈ −x, (3.2)

which makes the integrand proportional to ∝ e−βE . When considering string theory, we

should multiply this by the degeneracy of states ∝ eβHE (for large mass). We conclude

that for T � TH , the lowest m2 modes give the largest contribution to the free energy: the

degeneracy of high m2 states cannot compete with the lower mass. For T . TH , the higher

m2 modes are not subdominant but give important contributions to the free energy: the

full string theory is relevant.

For black holes, the above computation goes through almost identically.6 The free energy

4A divergence sets in in this case as well, though it is temperature-independent.
5Although we are somewhat reluctant to have too much faith in it due to the comments in the next

footnote.
6Note though that this has been questioned in [30] in the following way. It was suggested that the

genus one result on the thermal manifold does not correspond to the free-field trace, but instead includes

some interactions with open strings whose endpoints are fixed on the horizon. Despite being an explicit

proposal on the stringy microscopic degrees of freedom, little success has been booked in using and/or

proving aspects of this proposal since then. We will nonetheless assume that the free-field Hamiltonian

trace has the same critical Hagedorn temperature as predicted by genus one string thermodynamics. The

reason is that we believe we have given evidence that the critical temperature of the thermal scalar is tightly

linked to the random walk phenomenon close to black hole horizons and this long string picture is precisely

what is expected near the horizon on general arguments [11][12][13][14], strongly suggesting the equality of

βH and βHawking also for the free-field trace. Note that this assumption is only made in this argument here

and all other results that follow in other sections are independent of its validity. We will in fact further

investigate this issue in section 6.
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of a non-interacting Bose (and/or Fermi) gas of strings is given by

βF = ±
∑

species

∑∫
Ei

ln
(

1∓ e−βEi
)
, (3.3)

where we sum over all Lorentzian string states in the spectrum. The high energy states

again provide a factor of e−βE , with β the inverse Hawking temperature. Since this precisely

coincides with the Hagedorn temperature (determining the degeneracy of high energy string

states), the highly excited modes are very relevant and it is incorrect to approximate the

one-loop free energy of strings by that given solely by the massless modes.

In the physical picture we have, the massless modes alone do not give the random walker

surrounding the horizon; this is only obtained by considering the highly excited strings.

This is to be contrasted with several holographic computations (e.g. [35] where the authors

compute the one-loop free energy in a holographic black hole background using only one

class of charged matter).7

4 Approach to Heterotic Euclidean Rindler space

In this section we look at the near-horizon Rindler approximation of black holes. In [1] we

analyzed the critical one-loop string thermodynamics and found the following results for

the non-interacting thermal scalar field theory. The thermal scalar action for type II su-

perstrings is exactly given by the lowest order (in α′) action as was shown in [20][21][22] by

taking the large k limit of the SL(2,R)/U(1) black hole. The bosonic string thermal scalar

on the other hand does contain α′ corrections. We also observed that heterotic string the-

ory on flat C/ZN orbifolds agrees with a thermal scalar action without any α′ corrections

(like for type II superstrings), but we were unable to give a proof of this statement. In this

section we will present an argument as to why this is so. As in [21][1], we are looking for

a suitable cigar CFT to take the large k limit. There exist several approaches and points

of view on heterotic coset models (see e.g. [36][37][38][39][40][41]), and also several realiza-

tions of the analog of the cigar CFT. We choose the left-right symmetric realization where

the heterotic worldsheet theory actually has (1,1) supersymmetry instead of the expected

(0,1) supersymmetry [40]. Heterotic backgrounds can be trivially constructed from type

II backgrounds by embedding the spin connection in the gauge connection. This approach

was explored by [40] to discuss heterotic WZW models. One of the benefits of this approach

is that the techniques from type II coset models can be integrally carried over to this case,

in particular the identification of the exact background fields and the resulting (α′-exact)

tachyon equation of motion.

For more general heterotic models it becomes less clear whether such an approach is viable.

Other methods to distill the metric and dilaton exist in this case [38], but we also need

to determine the tachyon equation of motion, and the approach followed in [28] is ideally

7Of course we do not claim in any way that these authors are wrong, we simply point out some tension

between the gravity-plus-matter approach and the full string picture at one loop. Moreover, these authors

consider charged black holes while in our case uncharged black holes are studied.
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suited for this.

As a motivation to consider the left-right symmetric models, we note the following. In gen-

eral, the Busher rules for heterotic strings receive α′-corrections. Hence the thermal scalar

action in heterotic string theory receives α′-corrections, just like the bosonic string. How-

ever, if the background has an enlarged supersymmetry compared to the expected (0, 1)

SUSY, the heterotic string effectively behaves as a type II superstring and the Busher

rules do not get corrections (at least for (gauged) WZW models). The fact that for Rindler

space the lowest order (in α′) thermal scalar action appears to be α′-exact, is evidence that

in this case indeed more supersymmetry is present than expected. This shows why the

left-right symmetric approach to heterotic coset models (effectively giving type II models),

is the most natural place to look for realizing Euclidean Rindler space in heterotic string

theory.

Thus to any type II background, one can associate a heterotic background by embedding the

spin connection into the gauge connection. For this heterotic background, the fluctuation

equations of the states is given by the same L0 and L̄0 (written in terms of the Laplacian on

the coset) as for the type II superstring [40]. The only difference is in the precise on-shell

conditions, which for heterotic strings are given by

L0 − 1 = 0, (4.1)

L̄0 − 1/2 = 0. (4.2)

Within such a left-right symmetric approach, a SL(2,R)/U(1) CFT can be found with the

following background fields [40]

ds2 =
α′k

4

(
dr2 + 4 tanh

(r
2

)2
dθ2

)
, (4.3)

Φ = Φ0 − ln
(

cosh
(r

2

))
, (4.4)

Aθ = − 1

cosh
(
r
2

)2 , (4.5)

where the gauge connection equals the Lorentz spin connection and Ar = 0. The spin

connection is valued in the holonomy group of the 2d space (being U(1)). Hence the result

is an Abelian gauge field Aµ that resides in some U(1) subalgebra of the full heterotic gauge

algebra. The angular coordinate is identified as θ ∼ θ+ 2π. These coordinates are however

singular for r = 0, in the same way that polar coordinates are. Normally one can readily

continue the solutions to include r = 0, since no physical singularities are encountered at

r = 0. In this case however, the gauge field becomes singular at r = 0, and this singularity

has physical consequences. We therefore conclude that the above solution is only valid for

r > 0. The gauge field and its singular character are schematically depicted in figure 1.
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Figure 1: Left figure: top view of the cigar with the background gauge field schematically

shown. Right figure: side view of the cigar and the background gauge field.

The dual background (corresponding to a U(1) vector gauging) is given by

ds2 =
α′k

4

(
dr2 + 4 coth

(r
2

)2
dθ̃2

)
, (4.6)

Φ̃ = Φ̃0 − ln
(

sinh
(r

2

))
, (4.7)

Ãθ̃ =
1

sinh
(
r
2

)2 , (4.8)

where now θ̃ ∼ θ̃ + 2π
k . These background fields determine how winding modes sense the

geometry. Like for the bosonic and type II case, this geometry is trumpet-shaped with a

curvature singularity at the origin r = 0. This background is α′-exact and the tachyon

equation of motion can be readily determined in this background. Like for the type II

string, the winding tachyon equation of motion does not get α′ corrections compared to

the T-dual geometry of the background.8 In this case, the dual gauge field also blows up

at the origin, but this is irrelevant for the thermal scalar equation of motion since this one

is only determined by the dual metric and dual dilaton. Writing down the discrete mo-

mentum tachyon equation in this background (4.6) gives us the winding tachyon equation

of motion we are after.

Note that the propagation equations for the thermal scalar in this background are con-

structed from the same ingredients as those of the type II superstring (the L0 and L̄0

operators have the same form) and hence the background gauge field does not couple di-

rectly to the tree-level action of the thermal scalar. This in particular seems to imply that

the thermal scalar does not carry any charge corresponding to this background gauge field.

To see the flat limit, we substitute ρ =
√
α′k
2 r and then take k → ∞ keeping ρ fixed. The

geometry reduces to polar coordinates, the dilaton becomes constant and the gauge field

also becomes constant.

8The T-dual metric, dilaton and Kalb-Ramond field are not influenced by the non-vanishing gauge field.
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To proceed, we first discuss the singular character of the background fields. Let us briefly

look at the nature of the gauge field near the horizon. Near r = 0, the geometry reduces to

polar coordinates, and the gauge field becomes constant. So we are actually interested in

a constant angular gauge field Aθ = C = −1 in polar coordinates. One readily computes

the Cartesian components as

Ax = C
dθ

dx
= − Cy

x2 + y2
, Ay = C

dθ

dy
=

Cx

x2 + y2
(4.9)

and one finds that the field tensor Fxy vanishes (almost) everywhere (or directly in polar

coordinates Fρθ = 0). Nevertheless, the flux does not vanish since∫
disc

F =

∮
circle

dθAθ = 2πC (4.10)

so we find Fxy = 2πCδ(x, y) and there is a delta-source of magnetic flux present at the

origin. This flux is important because charged states can acquire an Aharonov-Bohm phase

upon circling the origin. From another perspective, the singularity of the gauge field at

the origin is translated to the violation of the commutativity of partial derivatives of the

angular coordinate at the origin:

Fxy = C (∂x∂y − ∂y∂x) θ 6= 0 at r = 0. (4.11)

Our strategy is to perform a (large) gauge transformation to eliminate the gauge field. The

gauge transformation has two effects that need to be separately analyzed. Firstly, the other

background fields might change, undoing the very thing we try to accomplish. This can be

analyzed easiest by turning to the effective spacetime action: a solution of the all-order in

α′ effective field theory yields a consistent background for string propagation.

Secondly, the fluctuations on this background might be charged under the background

gauge field. They hence can feel this gauge transformation. Both of these will be looked

at now.

4.1 Effect of gauge transformation on background

The background gauge transformation can influence the background fields. To lowest

order in α′, it is known that the Kalb-Ramond 2-form (despite being uncharged under Aµ)

undergoes a simultaneous gauge transformation of the form:

δB2 ∝ Tr (λdA) , (4.12)

δA = dλ. (4.13)

More generally, at higher orders in α′, the B2-form is known to transform also under gauge

transformations of the Lorentz connection, though we will not need this. Note that the

only (massless) field that is charged under the background gauge field is the gaugino. This

field transforms under a gauge transformation in the adjoint representation of the gauge

group (homogeneously) and hence if it is turned off initially, it will not be turned on by a

gauge transformation.
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What is crucial is that this gauge transformation is dictated by the Green-Schwarz anomaly

cancellation mechanism [42], and does not depend on the concrete form of the spacetime

effective action. Hence the above gauge transformation should hold to all orders in α′. And

indeed, the analysis of [43][44][45] shows that, up to three loops on the worldsheet, it is

only the gauge-independent combination

H̃3 = dB2 − cω3Y − c′ω3L (4.14)

that appears in the effective action. In this formula, the ω3’s are the Chern-Simons 3-forms

constructed with the Yang-Mills connection A or the Lorentz connection.

For Rindler space, we already have that dA = 0 for r 6= 0. This means B2 does not become

non-zero for r 6= 0 after the gauge transformation. Note that this is very different from the

original A. The original A field had a constant angular component and hence a singularity

at the origin. The new B2 is zero everywhere and can be chosen zero at the origin as well:

no global analysis (such as a line integral for A) can detect something is present at r = 0.

For all intents and purposes, the B2-form is absent. This gauge transformation obviously

maps solutions to solutions, and hence we can safely turn off the background A-field in this

case: no effects on other background fields are present.

4.2 Effect of gauge transformation on fluctuations

Gauge fields of the form (4.9) are well-known from studies of matter-coupled Chern-Simons

gauge theories in (2+1) dimensions and the related anyon statistics (see e.g. [46] and

references therein). In the k →∞ limit, the gauge field is pure gauge for r 6= 0 and can be

eliminated. However, charged states get multiplied by an angle-dependent prefactor and

their periodicity or anti-periodicity upon circling the origin gets altered to general anyon

statistics. A sketch of the situation is given in figure 2. In somewhat more detail, we can

Figure 2: The (ρ, θ) plane (or the xy plane) and the delta-source of magnetic flux at the

origin. States that circle the origin can receive an arbitrary phase factor corresponding to

anyon statistics.

write (for i = 1, 2, the Cartesian coordinates in the (ρ, θ) plane)

Ai = C∂i arg(x) = −∂iθ. (4.15)

Under a gauge transformation with Ai → Ai+∂iχ where χ = −C arg(x), the wavefunction

of a charged state gets changed into

ψ → eieχψ = eieθψ, (4.16)
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which hence changes indeed the phase of the state upon circling the origin by e2πie. The

charges of the matter depend on which U(1) embedding is chosen and it is difficult to say

anything concrete about these at this point.9

Let us now return to the entire cigar. We perform a large gauge transformation that kills

the singularity of the gauge field at the horizon. This introduces a non-zero Wilson loop at

infinity. This kind of reasoning was performed also in [47] in a different context.10 Charged

string states hence ‘feel’ the gauge transformation. In our case, we are interested in the

thermal scalar. This stringy state is uncharged under the gauge field11 (it only couples to

the gauge field through Fµν at higher orders in α′) and hence the statistics is unchanged

(i.e. it does not get premultiplied by a Wilson loop upon circling the cigar). So after per-

forming this (large) gauge transformation, the resulting equation of motion of the thermal

scalar is the same as before.

We summarize what we have done so far: the above background (equations (4.3)-(4.5)) is

valid only for r 6= 0. For this background the exact fluctuation equations for the string

states are known. We then perform a large gauge transformation that eliminates the gauge

singularity at r = 0. This transformation has physical consequences by introducing a

non-trivial Wilson-loop that influences charged string states. The thermal scalar on the

other hand is uncharged and its equation of motion is not influenced by the large gauge

transformation. Finally taking k →∞ while keeping ρ =
√
kα′r
2 fixed, we recover Euclidean

Rindler space for which the fluctuation equations for uncharged states have remained the

same during the gauge transformation. The fate of the charged string states is another

question, but for the purposes of this paper we are only interested in the thermal scalar

itself. For uncharged states, the gauge field has no physical impact anymore and we effec-

tively reduce the model to Euclidean Rindler space.

The propagation equations for the heterotic string are

L0 − 1 = 0, (4.17)

L̄0 − 1/2 = 0. (4.18)

Adding and subtracting gives

L0 + L̄0 − 3/2 = 0, (4.19)

L0 − L̄0 − 1/2 = 0. (4.20)

9Life would be simpler if we could choose an Abelian ideal instead, but unfortunately a semi-simple

algebra does not have such ideals.
10See also [48] for more discussions on this.
11This is because the gauge field comes from the 10 dimensional heterotic gauge field. If for example the

gauge field is actually a component of the Kaluza-Klein reduced metric, the thermal scalar would be charged

and the above reasoning would not hold. In fact, the thermal scalar of the heterotic string is explicitly

charged under the Kaluza-Klein gauge field Gµτ and under the Kalb-Ramond gauge field Bµτ , as one can

for instance see very explicitly in the low energy field theory of the thermal scalar as in [49].
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For this left-right symmetric cigar CFT the conformal weights reduce to those of the type

II superstring and so we find the conformal weights:12

h = −j(j − 1)

k
+
m2

k
, h̄ = −j(j − 1)

k
+
m̄2

k
, (4.21)

so the physicality constraint becomes

h− h̄ = wn = 1/2, (4.22)

just like in flat space. The equation of motion is determined by writing L0 + L̄0 in terms

of the Casimir operator, and is exactly the same as for type II superstrings. The metric

one obtains is again:

ds2 =
α′k

4

[
dr2 +

4

coth2
(
r
2

)dθ2 +
4

tanh2
(
r
2

)dθ̃2

]
. (4.23)

The eigenvalue equation for the NS primaries, that one obtains by taking k →∞, is now:13

− ∂ρ (ρ∂ρT (ρ))

ρ
+

[
− 3

α′
+ n2 1

ρ2
+ w2 ρ

2

α′2

]
T (ρ) = λT (ρ). (4.24)

The thermal scalar equation hence becomes[
−∂2

ρ −
1

ρ
∂ρ −

3

α′
+

1

4ρ2
+
ρ2

α′2

]
T (ρ) = λT (ρ). (4.25)

From this we conclude that indeed heterotic strings also do not receive α′ corrections to the

(quadratic part of the) thermal scalar action. The physicality constraint is the same as in

flat space, and the thermal scalar action combines discrete momentum and winding around

the Rindler origin. We already noted [1] that the critical behavior as dictated by this action

(and no corrections to it) agrees with the flat space C/ZN orbifold thermodynamics [15][16].

When considering the entire spectrum, we note that the only difference (modulo the charged

states issue) with type II strings is that the constraint is different and so different states

are allowed or forbidden. The constraint is

NL −NR + nw = 1/2, (4.26)

even before taking the k →∞ limit. In particular, the wavefunctions of the states are the

same as those for type II superstrings. One can imagine that for asymmetric constructions

this constraint might be different.

12The spectrum on the cigar CFT is explicitly written down in appendix A for bosonic and type II

superstrings. The reader who is not aware of these formulas should consult it at this point.
13At least for the uncharged string states as discussed above.
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5 Flat space limit of the cigar partition function

In [22] it was shown for the type II superstring that the large k limit can be directly taken

at the partition function level. The authors use a modular invariant regularization to deal

with the internal divergences and reinterpret this regulator (together with the level k) as

the volume divergence of flat space. The discrete states are however not found anymore in

the large k limit of the partition function and it was speculated that their imprint should

be found as a 1/k effect.

In this section we study this limit further. We first focus on the bosonic string and its

orbifolds. The benefit of studying orbifolds is that in the twisted sectors no volume diver-

gence arises and this allows a clean comparison between the flat C/ZN partition function

and the cigar orbifold partition function in the large k limit. This allows us to make the

link between these models more precise. We also present similar formulas for type II su-

perstrings. For these, the authors of [22] argued that the tip of the cigar is special due to

the GSO projection imposed at infinity, essentially causing a breakdown of the coordinate

equivalence between cartesian and polar coordinates in the flat limit. We will come back to

this point in what follows. In [1] we only compared the dominant thermal scalar behavior

of both partition functions. The results of this section can be viewed as a more elaborate

comparison of the full partition functions.

5.1 Bosonic cigar CFT

The partition function for the ZN -orbifolded cigar CFT can be written in the following

form [50][1][26]:

Z =
1

N
2
√
k(k − 2)

∫
F

dτdτ̄

τ2

∫ +∞

−∞
ds1ds2

N−1∑
m,w=0

∑
i

qhi q̄h̄ie
4πτ2(1− 1

4(k−2)
)− kπ

τ2
|(s1− w

N
)τ+(s2−mN )|2+2πτ2s21

1

|sin(π(s1τ + s2))|2

∣∣∣∣∣
+∞∏
r=1

(1− e2πirτ )2

(1− e2πirτ−2πi(s1τ+s2))(1− e2πirτ+2πi(s1τ+s2))

∣∣∣∣∣
2

. (5.1)

In this formula, the bc-ghosts have already been included and an internal CFT with weights

hi is left arbitrary. As usual, q = exp(2πiτ). First we focus on the twisted sectors (with

(w,m) 6= (0, 0)), since these do not exhibit a volume divergence. The large k limit implies

that the s1- and s2-integrals are dominated by s1 = w/N and s2 = m/N . The infinite

product factor in the end should simply be evaluated at this point. The theta-function

appearing here can be directly related to the theta function with characteristics using the
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following set of formulas (and setting ν = w
N τ + m

N ):

θ1(ν, τ) = 2eπiτ/4 sin(πν)
+∞∏
n=1

(1− qn)(1− zqn)(1− z−1qn), (5.2)

−θ1(ν, τ) = θ

[
1
2
1
2

]
(ν, τ) = e

πiτ
4

+πi(ν+ 1
2

)θ

(
ν +

τ

2
+

1

2
, τ

)
, (5.3)

θ

[
1
2 + w

N
1
2 + m

N

]
(τ) = eπiτ(

1
2

+ w
N )

2
+2πi( 1

2
+ w
N )( 1

2
+m
N )θ

((
1

2
+
w

N

)
τ +

(
1

2
+
m

N

)
, τ

)
, (5.4)

where z = exp(2πiν). After some straightforward arithmetic, we can then write for this

sector:

Zw,m ≈
1

N
2
√
k(k − 2)

∫
F

dτdτ̄

τ2

∫ +∞

−∞
ds1ds2

∑
i

qhi q̄h̄ie
4πτ2(1− 1

4(k−2)
)− kπ

τ2
|(s1− w

N
)τ+(s2−mN )|2 4

∣∣∏+∞
n=1(1− qn)

∣∣6 e−πτ2/2∣∣∣∣∣θ
[

1
2 + w

N
1
2 + m

N

]
(τ)

∣∣∣∣∣
2 . (5.5)

To evaluate the integral, we make use of polar coordinates in the form s1τ + s2 = x1 + ix2

or14

s1τ1 + s2 = ρ cos(φ), (5.6)

s1τ2 = ρ sin(φ). (5.7)

The transformation from (s1, s2) to (ρ, φ) has Jacobian ρ/τ2. Hence the remaining integral

becomes
2π

τ2

∫ +∞

0
dρρe

−πk
τ2
ρ2

=
1

k
. (5.8)

In the large k-limit, we hence obtain

Zw,m ≈
1

N
2

∫
F

dτdτ̄

τ2

∑
i

qhi q̄h̄ie4πτ2 4 |η(τ)|6∣∣∣∣∣θ
[

1
2 + w

N
1
2 + m

N

]
(τ)

∣∣∣∣∣
2 , (5.9)

where η(τ) = q1/24
∏+∞
n=1(1−qn) is the Dedekind eta-function. Note that the factor e4πτ2 =

(qq̄)−1 is to be interpreted as the central charge term of the internal CFT with c = 24.

Choosing this internal CFT to be flat, we obtain in the end

Zw,m ≈
VT
N

2

∫
F

dτdτ̄

τ2

1

(4π2α′τ2)12
|η|−48 4 |η|6∣∣∣∣∣θ

[
1
2 + w

N
1
2 + m

N

]
(τ)

∣∣∣∣∣
2 . (5.10)

14To be more precise, we first shift s1 → s1 + w/N and s2 → s2 +m/N .
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which agrees with the flat (w, m) sector [15][16].15

The sector w = m = 0 should be dealt with separately, since the sine function in (5.1)

causes a divergence that is to be interpreted as a IR volume divergence.

The above analysis has the following modifications. Firstly, the saddle point is at s1 =

s2 = 0. This implies the infinite product in (5.1) becomes equal to 1. The sine factor

blows up at the origin and we regulate it by cutting out a ε-sized circle in the x1, x2 plane

(following [22]). The final saddle-point integral is given by16

2π

τ2

∫ +∞

ε
dρρ

e
−πk
τ2
ρ2

π2ρ2
= − 2

πτ2
ln(ε). (5.14)

The resulting expression can be compared with the w = m = 0 sector of C/ZN which is

given by

Z =
VTA
N

∫
F

dτdτ̄

4τ2
2

1

(4π2α′τ2)12
|η(τ)|−48 . (5.15)

This allows us to identify the transverse area with the following divergent quantities:

A = − 1

2π

√
k(k − 2) ln(ε). (5.16)

In the large k limit this becomes17

A = − 1

2π
k ln(ε) . (5.19)

15In fact, we are off by a factor of 32. We would like to have obtained instead

Zw,m ≈
VT
N

∫
F

dτdτ̄

4τ2

1

(4π2α′τ2)12
|η|−48 |η|6∣∣∣∣∣θ

[
1
2

+ w
N

1
2

+ m
N

]
(τ)

∣∣∣∣∣
2 . (5.11)

We interpret this as a factor that should be included in the result of [26]. For the type II superstring, the

expressions given in the literature have a different normalization, and we will not have this discrepancy

anymore. In the following computation of the bosonic string, we include this factor of 1/32.
16In writing this we used the formula for the exponential integral:∫

dx
e−Ax

2

x
= −1

2
Ei(1, Ax2), (5.12)

with the series expansion

Ei(1, Ax2) ≈ −γ − ln(A)− 2 ln(x) +Ax2 − 1

4
A2x4 +O(x6). (5.13)

The first two terms are irrelevant in a definite integral (such as the one we have here). The third term is

important: it gives precisely the ln(ε) dominant contribution.
17This implies that for fixed area A, k scales as − 1

ln(ε)
. The higher terms in the above expansion (5.13)

are then of the form (including the k prefactor present in the partition function (5.1) itself)

k2ε2 ∼ ε2

ln(ε)2
→ 0, (5.17)

or for the general term
ε2n

ln(ε)n+1
→ 0. (5.18)

Hence there are no subleading corrections that survive the k →∞ limit.

– 16 –



5.2 Extension to the type II superstring for odd N

The above reasoning can be readily generalized to the ZN orbifolds of the type II superstring

on each of these spaces. The formulas are a bit long, but the logic is the same as for the

bosonic string. For odd N , the flat conical partition function is of the form [16]

Z(τ) =
1

4N

(
1

|η|2
√

4π2α′τ2

)6 N−1∑
w,m=0

∑
α,β,γ,δ

ω′αβ(w,m)ω̄′γδ(w,m)

×
θ

[
α

β

]3

θ

[
α+ w

N

β + m
N

]
θ̄

[
γ

δ

]3

θ̄

[
γ + w

N

δ + m
N

]
∣∣∣∣∣θ
[

1
2 + w

N
1
2 + m

N

]
η3

∣∣∣∣∣
2 . (5.20)

The ω′ prefactors are given as follows

ω′00(w,m) = 1, (5.21)

ω′
0 1

2

(w,m) = e−
πiw
N (−1)w+1, (5.22)

ω′1
2

0
(w,m) = (−1)m+1, (5.23)

ω′1
2

1
2

(w,m) = ±e−
πiw
N (−1)w+m. (5.24)

The partition function on the cigar orbifold on the other hand is given by [50][22]

Z(τ) =
k

N

∑
σL,σR

∑
w,m∈Z

∫ 1

0
ds1ds2ε(σL;w,m)ε(σR;w,m)

× fσL(s1τ + s2, τ)f∗σR(s1τ + s2, τ)e
−πk
τ2
|(s1− w

N )τ+(s2−mN )|2 . (5.25)

where

fσ(u, τ) =
θσ(u, τ)

θ1(u, τ)

(
θσ(0, τ)

η

)3

, (5.26)

where θσ = θ1,2,3,4 for σ = R̃, R,NS, ÑS respectively and ε = (1, (−1)w+1, (−1)m+1, (−1)w+m)

for (NS, ÑS, R, R̃) respectively. This partition function includes all contributions from

the worldsheet fermions and their spin structure and also the superconformal ghosts. To

make this into a full string partition function, only a bosonic contribution should be added.

To make the link between these models, we rewrite the theta-functions by linking them
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directly as

θ

[
1
2 + w

N
1
2 + m

N

]
= −eπiτ

w2

N2 +πi w
N

+ 2πiwm
N2 θ1

(w
N
τ +

m

N
, τ
)
, (5.27)

θ

[
w
N
m
N

]
= eπiτ

w2

N2 + 2πiwm
N2 θ3

(w
N
τ +

m

N
, τ
)
, (5.28)

θ

[
1
2 + w

N
m
N

]
= eπiτ

w2

N2 + 2πiwm
N2 θ2

(w
N
τ +

m

N
, τ
)
, (5.29)

θ

[
w
N

1
2 + m

N

]
= eπiτ

w2

N2 +πi w
N

+ 2πiwm
N2 θ4

(w
N
τ +

m

N
, τ
)
. (5.30)

The link between the σ-index and the (α, β) couple is:

(1/2, 1/2)→ R̃, (5.31)

(1/2, 0)→ R, (5.32)

(0, 1/2)→ NS, (5.33)

(0, 0)→ ÑS. (5.34)

Again the saddle point can be handled quite easily. The saddle point integral yields again

1/k, where all other factors present in the cigar partition function (5.25) are simply to

be evaluated at s1 = w
N and s2 = m

N . The rest is simply a bookkeeping exercise.18 The

prefactor of

(
1

|η|2
√

4π2α′τ2

)6

can be generated by including 8 free bosons and the bc ghosts,

giving in total the contribution of 6 free bosons indeed.19

A question that immediately arises in this process is the following. For the flat orbifold,

it is known that only odd N makes sense as a string theory on a cone [15][16][51]. Yet on

the cigar orbifold, no mention is made of such a restriction in the literature [50][52][53].

Although we should remark that in most of this work, the authors were interested in con-

structing consistent modular invariant partition functions (which is satisfied by the above

expression also for even N). It seems then that also for these spaces, an interpretation in

terms of strings on a cone can only be given for odd N . We postpone a deeper investigation

into this issue to possible future work.20

18For the reader who is interested in more details, we make the following remarks. Starting with expression

(5.20) and focussing on the holomorphic part with α and β, the sectors with β = 1/2 have a e−πiw/N factor

in the ω′’s which cancels with the eπiw/N phase present in the above conversion formulas. After this, all

sectors above have the same prefactors, thus upon including the complex conjugate expression, only their

modulus contributes and this gives a global prefactor e
−2πτ2

w2

N2 , which cancels with the same prefactor

appearing from the denominator.
19Up to a 1/

√
τ2 prefactor which in the notation of [16] is absorbed into the fundamental domain measure.

20In fact, the argument given in [51] can be copied exactly for the cigar orbifolds. The orbifold identifi-

cation has two possible actions on the spacetime spinors:

R = e
2πiJ
N or R = (−)F e

2πiJ
N (5.35)
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The untwisted sector (w = m = 0) was handled in [22]. In more detail, it is given by

Z(τ) ≈ − k

Nτ2
ln(ε)

2

π

1

4

∣∣θ4
3 − θ4

4 − θ4
2

∣∣2
|η|12 , (5.36)

which equals the flat space cosmological constant (up to the factor of 1/N) and it vanishes

again due to Jacobi’s obscure identity. Including the other flat dimensions, the bc-ghosts

and the modular integral, we obtain

Z ≈ − 1

N

∫
F

dτdτ̄

4τ2
2

k ln(ε)
1

2π

(
1

|η|2
√

4π2α′τ2

)6
∣∣θ4

3 − θ4
4 − θ4

2

∣∣2
|η|12 . (5.37)

The transverse area can again be identified in this expression as the same formula (5.19).

This seems a quite important result: even though the GSO projection assigns a special role

to the angular coordinate, the partition function of Euclidean Rindler space is precisely

the same as the flat space vacuum energy on an infinite 2d plane (just as it was for the

bosonic string).

Let us end on a more speculative note here. This equality means the coordinate transforma-

tion from polar coordinates to cartesian coordinates is unhindered by the GSO projection.

Besides being mathematically interesting, this has important physical consequences.

First let us go back to quantum field theory in curved spacetimes. We remind the reader

that for quantum fields in Rindler space, the stress tensor vanishes in the Minkowski vac-

uum, which can be rewritten in terms of the coordinates of the Rindler observer as:

〈Tµν〉M = 〈Tµν〉R + TrR

(
Tµνe

−βHR
)
HR 6=0

. (5.38)

The thermal bath of Rindler particles combines with the Casimir contribution to give a

vanishing vev. Thus the thermal bath does not backreact on the background. The ultimate

reason for this is the fact that Rindler space and Minkowski spacetime are simply related

by a coordinate transformation.

This QFT story can be interpreted in Euclidean signature as well. It was shown in

[54][55][56][32] that the Euclidean propagator in flat space can be expanded into a sum

over winding numbers around the origin:

G(r, 0; r′, φ; s) =
∑
w∈Z

G(w)(r, 0; r′, φ; s). (5.39)

This relation is shown diagrammatically in figure 3.

The stress tensor vev can then be obtained by applying a suitable differential operator on

the Green function and taking the coincidence limit of the two points. Hence we obtain

〈Tµν〉E = 〈Tµν〉w=0 +

+∞∑
w′=−∞

〈Tµν〉w , (5.40)

where J is the generator of angular rotations in the U(1) cigar angular direction (which becomes J89 on the

plane of [51] by taking k →∞). Then we have RN = (−)F or RN = (−)(N+1)F . The first possibility leads

to an inclusion of (−)F in the orbifold group and the absence of spacetime spinors (which is unwanted).

We hence should choose the second option with odd N to avoid this.
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Figure 3: The total Euclidean propagator in flat space between points (r, 0) and (r′, φ)

can be written as a sum over propagators with fixed winding number around the origin.

where the prime denotes the absence of the w = 0 term in the sum. The w = 0 term is the

temperature-independent Casimir contribution whereas the remaining sum is the thermal

contribution. In this Euclidean setting, it is apparent that the vanishing of the vev in

2d flat space implies that the sum of the Casimir and the thermal contributions vanish.

Again the main reason is the coordinate equivalence between cartesian coordinates and

polar coordinates.

Now back to string theory. The fact that the partition function of string theory in polar

coordinates is the same as that in cartesian coordinates shows that the coordinate transition

between both is still valid in string theory. This is a necessary condition to have a vanishing

stress tensor.21 In this sense, the tip of the cigar is not special and the GSO projection

does not ruin the coordinate equivalence between polar and cartesian coordinates. This

suggests there is no backreaction caused by the thermal atmosphere of the black hole (a

good thing!).

5.3 Continuation of the flat orbifold inherited from the cigar orbifold

Let us make a short detour here and consider a question first posed in [15]: can we continue

the partition functions on the C/ZN orbifolds to a non-integer N? An immediate response

would be no, since modular invariance is no longer present for such values ofN . Overcoming

the initial shock, one might be tempted to use this approach as a possible off-shell proposal

for string theory on a cone. In fact, we argued in [1] that for the dominant behavior (given

in field theory language) such a continuation is quite natural. Even if one believes this, the

partition functions on C/ZN do not lend themselves towards continuation in N (as was

discussed by Dabholkar as well [15]). Here, we perform this natural continuation at the

level of the partition function on the cigar orbifold. Our goal is to use this continuation of

the cigar CFT to tell us something about the continuation for the flat cones.

21It seems difficult to make this point more firmly: the full stress tensor of the string gas seems difficult

to obtain; we only obtained the most dominant contribution in [57]. The free energy however is directly

linked to the canonical internal energy which is to be interpreted as the spatial integral of T 0
0 and the result

we obtain is then only in the weaker integrated sense.
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The partition function (5.1) on the cigar orbifold can be rewritten in the suggestive way

Z =
1

N
2
√
k(k − 2)

∫
F

dτdτ̄

τ2

∫ 1

0
ds1ds2

+∞∑
m,w=−∞

∑
i

qhi q̄h̄ie
4πτ2(1− 1

4(k−2)
)− kπ

τ2
|(s1− w

N
)τ+(s2−mN )|2+2πτ2s21

1

|sin(π(s1τ + s2))|2

∣∣∣∣∣
+∞∏
r=1

(1− e2πirτ )2

(1− e2πirτ−2πi(s1τ+s2))(1− e2πirτ+2πi(s1τ+s2))

∣∣∣∣∣
2

. (5.41)

This allows a natural continuation in N as 1/N → β
βHawking

, where modular invariance is

lost. We investigate how this translates into a continuation of the flat cone.

Firstly, the s1- and s2-integrals are only over a unit interval here. The untwisted sector

has two stationary points for each s-integral: s = 0 and s = 1.22 However, both are

at the boundary of the integration interval and hence receive weight factor 1/2. Both

contributions are equal due to the periodicity of the Ray-Singer torsion. In all, one can

choose one of these saddle points and neglect the weight factors. This agrees with our

earlier analysis of the saddle points.

Upon making the replacement for 1/N , one finds a saddle point only for those w and m

for which

0 ≤ wβ

βHawking
≤ 1, 0 ≤ mβ

βHawking
≤ 1 (5.42)

holds. The lower boundary corresponds to the untwisted sector and the upper boundary

is only reached precisely for the orbifold models. For such general values of β, the points

(s1, s2) = (1, 0), (0, 1), (1, 1) are not saddle points anymore. This implies the untwisted

sector has an overall scaling of 1/4 with respect to the orbifold points. The only difference

for the twisted sectors is hence the replacement of the twisted sum by

1

N

N−1∑
m,w=0

→ β

βHawking

′∑
m,w

(5.43)

where the prime indicates that m and w are integers restricted by (5.42). One readily

checks that for the orbifold points, one regains the earlier results.

In particular, this continuation implies that for T < THawking the only sector present is the

m = w = 0 sector and this is unchanged as β is varied. This is in conflict with the free-field

trace Tre−βH which decreases monotonically as β increases.

We note that the most dominant thermal state (w = ±1,m = 0) is present as soon as

T > THawking. At the Hawking temperature itself, we saw earlier that this state is in fact

also present, albeit camouflaged in the flat space result. Thus one can follow this state

22In fact, the stationary point s1 = 1 corresponds to w = 1 which gets translated upon using Poisson

resummation etc. into the winding 1 mode. Higher winding modes (which would correspond to s1 = 2 etc.)

are not stationary points. This shows from this perspective as well that only singly wound modes are present

in the large k limit. As a reminder, the w and m quantum numbers are the torus cycle winding numbers.

The m quantum number gets Poisson resummed into the discrete momentum whereas the winding number

w remains the same (at least for the discrete representations) throughout the manipulations.
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as one lowers the temperature all the way to the Hawking temperature where this state

becomes marginal. This seems to fit with our general expectations on continuing this state

through a range of temperatures.

Also, this continuation makes it clear that this resulting off-shell proposal is non-analytic

in N , in contrast to the arguments made by Dabholkar.

The arguments presented in this section should not be viewed as a full-fledged proposal

for the off-shell continuation of the flat cones, we merely link the most natural off-shell

continuation of the cigar orbifolds to the inherited off-shell continuation of the flat cones.

Whether these continuations make sense, is left open.

What is apparent is that one gets another hint that these partition functions do not ap-

pear to correspond to Hamiltonian free field traces (other hints are the discussions made

by Susskind and Uglum [30] and the absence of certain winding sectors in the thermal

spectrum (i.e. the unitarity constraints of the model), obscuring a thermal interpretation

[29]).

In the next section, we will make a concrete proposal explaining this discrepancy.

6 String thermodynamics and modular domains for contractible thermal

circles

The discussions made in the previous section actually allow us to discuss more deeply

the role of our starting point: does one define string thermodynamics in the fundamental

domain or in the strip? Are these descriptions always identical? We shall first answer this

question in the affirmative in a general background, after which we will uncover a puzzle

with the precise partition functions discussed in the previous section. The discrepancy

will be explained by a more detailed discussion on the different torus embeddings that are

actually path integrated over.

6.1 Generalization of the McClain-Roth-O’Brien-Tan theorem

The general torus path integral on the fundamental domain for a general (on-shell) back-

ground23

ZT2 =

∫
F

dτ2

2τ2
dτ1∆FP

∫
[DX]

√
G exp− 1

4πα′

∫
d2σ
√
hhαβ∂αX

µ∂βX
νGµν(X), (6.1)

where ∆FP is the Faddeev-Popov determinant |η|4 and with the torus boundary conditions

(for some periodic field X)

X(σ1 + 2π, σ2) = X(σ1, σ2) + 2πwR, (6.2)

X(σ1 + 2πτ1, σ
2 + 2πτ2) = X(σ1, σ2) + 2πmR, (6.3)

23For simplicity we write down only a metric background here, but the result is more general.
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can be rewritten in the strip domain as

ZT2 =

∫ ∞
0

dτ2

2τ2

∫ 1/2

−1/2
dτ1∆FP

∫
[DX]

√
G exp− 1

4πα′

∫
d2σ
√
hhαβ∂αX

µ∂βX
νGµν(X),

(6.4)

with torus boundary conditions

X(σ1 + 2π, σ2) = X(σ1, σ2), (6.5)

X(σ1 + 2πτ1, σ
2 + 2πτ2) = X(σ1, σ2) + 2πrR. (6.6)

In flat space, this equality was established by [58][59] some time ago. In their proof, the

authors make explicit use of the flat space worldsheet action. It turns out (almost trivially)

that one can make the argument independent of the flat space action and hence generalize

it to an arbitrary conformal worldsheet model.

Starting in the fundamental domain, the proof uses that the effect of a modular transfor-

mation can be undone by a redefinition of the wrapping numbers:

T : m→ m+ w, (6.7)

S : m→ −w, w → m. (6.8)

One does not need the precise action for this. What is required is that the worldsheet the-

ory is conformally invariant. The proof then follows exactly the same strategy as for flat

space: one can map each (m,w) sector into (r, 0) by a modular transformation, precisely

building up the strip modular domain in the process. These steps are made with much

more care in appendix B.

Note that no use is made of the non-contractibility of the X-cycle: in fact one can apply

this to a contractible circle as well (like the angular coordinate in polar coordinates). This

shows in a very general way that the fundamental domain and the strip domain give equal

results in any spacetime.

6.2 What do these path integrals represent for Euclidean Rindler space?

Now we come to an important point that we did not discuss at all in [18].

The above configurations (6.1) and (6.4) do not represent the most general embedding of

the worldsheet torus into the target space, when this space has a contractible X-circle.

It is most transparent to discuss this first in the strip domain. The string path integral

with winding only along one of the torus cycles (6.4) represents a restricted set of tori

embeddings in the target space when the thermal circle is contractible. Upon shifting the

dependence on the moduli from the boundary conditions to the worldsheet metric, the

torus wrapping (along only the temporal worldsheet direction) is imposed as

X0(σ1, σ2 + 1) = X0(σ1, σ2) + rβ, (6.9)

where σ1 is the spatial coordinate on the worldsheet and σ2 is the timelike coordinate.

The interpretation of this boundary condition is that all points along a fixed σ2-slice
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rotate along the (Euclidean) time dimension to form a 2-torus. As an example, let us take

a closer look at Rindler space. For Euclidean Rindler space, this means that configurations

such as 4(a) are not integrated over: points in the “inner” path do not rotate around the

Rindler origin. Configurations displayed in figure 4(b) on the other hand are the ones that

we take into account.

(a) (b) (c)

Figure 4: (a) Singly wound torus that intersects the axis (perpendicular to the Rindler

plane) through the Euclidean Rindler origin. Such configurations are not path integrated

over in (6.4). (b) Singly wound torus that does not intersect the axis through the Euclidean

Rindler origin. Such configurations are path integrated over in (6.4). (c) Twice wound torus

that again does not intersect the axis through the origin. Such a configuration corresponds

to a free closed string thermal trace.

It is interesting to point out that the configurations shown in figure 4(a) are associated

in [30] to open-closed interactions in the Lorentzian picture and these are entirely missed

in the above path integral approach to string thermodynamics, suggesting that the non-

interacting closed string trace only is contained in the above path integral. The higher

winding numbers are associated to tori that wind around the Rindler origin multiple times,

such as that displayed in the right most figure of figure 4.

On the fundamental domain with 2 wrapping numbers (6.1), the same story happens: some

torus embeddings are completely missed. Crucial in this argument is that the above torus

boundary conditions do not allow mixed wrapping numbers (a property that could be al-

lowed in a contractible target space), such as the torus embedding in the left figure of figure

4. This means the Susskind-Uglum interactions are completely missed in the above path

integrals, suggesting that they give only non-interacting (free-field) closed strings.24

24A point of critique is to be mentioned here: this path integral represents one string loop on the thermal

manifold. Even in field theory, it is unclear whether the free field trace and the one-loop result on the

thermal manifold agree for gauge fields (and for higher spin fields as well) [61][62][63][64]. For a very

interesting recent development, see [65]. Presumably, this string path integral should hence be compared

with the Hamiltonian trace over Lorentzian fields.
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6.3 Explicit CFT result

The other approach to Euclidean Rindler space (starting from the cigar CFT and then

taking the small curvature (large k) limit), leads to apparently different results. The

bosonic partition function [26] is given by

Z = 2
√
k(k − 2)

∫
F

dτdτ̄

τ2

∫ 1

0
ds1ds2

+∞∑
m,w=−∞

∑
i

qhi q̄h̄ie
4πτ2(1− 1

4(k−2)
)− kπ

τ2
|(s1−w)τ−(s2−m)|2+2πτ2s21

1

|sin(π(s1τ − s2))|2

∣∣∣∣∣
+∞∏
r=1

(1− e2πirτ )2

(1− e2πirτ−2πi(s1τ−s2))(1− e2πirτ+2πi(s1τ−s2))

∣∣∣∣∣
2

. (6.10)

As explicitly demonstrated above in equation (5.15), the large k limit yields the partition

function of an infinite 2d plane.

In [50], Sugawara wrote down the partition function obtained upon setting w = 0 and

simultaneously extending the modular integration to the entire strip. This application

of the McClain-Roth-O’Brien-Tan theorem is a bit naive as we demonstrate here. The

candidate partition function equals

Zcandidate = Zm=w=0 + 2
√
k(k − 2)

∫
E

dτdτ̄

τ2

∫ 1

0
ds1ds2

+∞∑
m′=−∞

∑
i

qhi q̄h̄ie
4πτ2(1− 1

4(k−2)
)− kπ

τ2
|s1τ−(s2−m)|2+2πτ2s21

1

|sin(π(s1τ − s2))|2

∣∣∣∣∣
+∞∏
r=1

(1− e2πirτ )2

(1− e2πirτ−2πi(s1τ−s2))(1− e2πirτ+2πi(s1τ−s2))

∣∣∣∣∣
2

, (6.11)

where the prime on the summation index denotes that we do not include the m = 0 term.

Taking the large k limit, one finds (upon dropping the (m,w) = (0, 0) sector) almost the

same expression as (5.15):25

Zcandidate ∼ VTA
∫
E

dτdτ̄

4τ2
2

1

τ2
12
|η(τ)|−48 , (6.12)

the only difference being the change in modular integration domain. What one can say

about this, is that the simple replacement of the strip E with F and the inclusion of a

second sum (over w) does not give equal quantities. If it did, then the large k limits should

be the same as well.26

25Upon reincluding the factor of 1/N .
26It is instructive to follow the arguments in either of these papers [58][59] as far as possible. It turns

out that the holonomy integrals over s1 and s2 in the end are causing the mismatch: these parameters

transform as a doublet under modular transformations (just as m and w), the problem then finally is the

region of integration of these variables, which does not allow a clean extraction of the sum over different

modular images to build up the strip domain.
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For type II superstrings, one would obtain instead (again dropping the (m,w) = (0, 0)

sector)

Zcandidate ∼ VTA
∫
E

dτ1dτ2

2τ2
2

1

τ2

(
1

|η|2√τ2

)6 ∣∣θ4
3 − θ4

4 − θ4
2

∣∣2
|η|12 = 0. (6.13)

We want to emphasize two points on these observations. Firstly, the fundamental domain

and strip results of this partition function are not equal, apparently in contradiction to

the arguments given in the previous subsection 6.1. Secondly, for type II superstrings in

the strip, the partition functions (5.37) and (6.13) vanish, a property which is (nearly)

impossible for a free-field thermal trace.

How then is this consistent with our discussion in the two previous subsections? To that

effect, let us take a closer look at the path integral boundary conditions used to obtain

equation (6.10) in the first place. In [26], coordinate transformations were made obscuring

the wrapping numbers around the cigar. Indeed, the temporal (i.e. angular) coordinate φ

(φ ∼ φ+ 2π) was transformed into a single-valued coordinate v as27

v = sinh(r/2)eiφeiρ (6.14)

and the remainder of the derivation focused on this coordinate. However, no fixed wrapping

numbers along φ were specified in advance, and in the end both tori with fixed wrapping

numbers along both cycles (i.e. those that do not intersect the origin) and those that are

partially wrapped are all in principle considered: they all get mapped into the same v

coordinate. Only in the end one again (re)identifies the winding numbers.

Moreover, we have shown in the previous section 5 that the flat limit indeed reproduces the

entire 2d plane partition function, meaning these partially wrapped torus configurations are

indeed taken into account. These facts strongly suggest that indeed the partially wrapped

tori are considered as well for these partition functions.

6.4 Discussion

We conclude that the partition function result in [26] actually is the genus 1 result on the

thermal manifold and includes torus embeddings with non-definite winding number. The

free-field trace on the other hand corresponds to the path integrals (6.4) or (6.1) in which

the temporal coordinate has a definite winding number and these expressions are not the

same as the full genus 1 result.

To proceed then, imagine we focus first on manifolds where all winding modes are present

on the thermal manifold (topologically stable thermal circles). In previous work [18], we

obtained the most dominant (random walk) contribution directly from the string path in-

tegral (6.4) with torus boundary conditions (6.4), thereby reducing the string theory on

27In this formula, r is the radial coordinate and ρ is related to the gauge field of the gauged WZW model.

These coordinates are not relevant for our discussion here.
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the modular strip to a particle theory of the thermal scalar. Alternatively, from the field

theory (and CFT) point of view, the most dominant mode (the thermal scalar) on the

thermal manifold (on the modular fundamental domain) can be used to arrive at the same

dominant behavior. Both of these approaches should match for spaces with topologically

stable thermal circles and we used this in [18] to identify possible corrections to the random

walk picture and to obtain the Hagedorn temperature on such a manifold.

This determines the random walk corrections fully for any manifold: it seems impossible

to imagine what sort of local corrections could be added to the (non-interacting) thermal

scalar action that vanish on all manifolds with topologically stable thermal circles but are

in general non-zero on the others.

From this perspective, when the manifold is topologically unstable in the thermal direction

(such as for black holes or Rindler space), one could follow the worldsheet (i.e. string path

integral) derivation of the thermal scalar starting from equation (6.4) and observe that the

thermal scalar still determines the critical behavior, irrespective of whether it is present in

the thermal spectrum (on the fundamental domain) or not.

In particular, all winding numbers are present in the path integral result of section 6.1

and we can use the thermal spectrum simply as a tool to extract the form of the thermal

scalar action. After that, the path integral of section 6.1 with its angular wrapping number

stands on its own and represents the contribution from non-interacting closed strings.

Such a scenario would also solve our understanding of the BTZ WZW models where ther-

mal winding modes are simply absent [60]. The free string path integral (6.4) on the other

hand has no problem with non-zero thermal windings. This discrepancy hence seems to be

again related to the special torus embeddings that in the end cause the absence of thermal

winding modes.

We finally remark that this would imply that the bosonic non-interacting free energy for

Rindler space diverges (due to all windings since all of them are tachyonic (these are simply

not present in the genus-1 result)). All winding (non-oscillator) modes are tachyonic and

localized at a string length from the horizon (higher winding modes are localized even more

closely to the event horizon). This seems to be in agreement with the maximal acceleration

phenomenon of [32].

With this understanding of the two different ways of studying string thermodynamics, one

can ask which one is the most natural? The path integral approach leads to non-interacting

strings in a fixed background, whereas the thermal manifold (CFT) approach leads to the

full genus 1 result, which includes interactions with open strings stuck on the horizon.

These interactions are quite exotic, since for instance dialling down the string coupling

gs does not decouple in any way these interactions: they are inherent to the torus path

integral on the thermal manifold. In summing over genera to obtain the full (perturbative)

thermodynamics, they should be included as well. In the next sections this will be our

state of mind.

Then what does the non-interacting trace do for us? It represents the sum over non-

– 27 –



interacting closed strings and should correspond to the free-field trace, an object that can

be constructed in principle as soon as the Lorentzian (non-interacting) string spectrum is

known. The results of section 6.1 show that this quantity is modular invariant as well and

hence has a well-defined meaning in string theory (as coming from a torus worldsheet).28

The difference between these two approaches can be illustrated by realizing that in fact

the path integral approach of section 6.1 actually considers the perforated space where the

fixpoint is removed from the space: one can arrive at this setting by for instance taking

the pinching limit of a topologically supported thermal circle. String worldsheets are hence

not allowed to cross this fixpoint. Reincluding this point in the geometry leads to the full

genus one result, to be interpreted as both free strings and exotic open-closed interactions.

Finally let us remark that the fact that for the cigar CFT (and its flat limit) the singly

wound string state is present in the thermal spectrum, implies that the dominant regime

of both of these different partition functions (6.4) and (6.10) is actually the same: both

are dominated by the thermal scalar. This implies the open-closed interactions are a

subdominant effect near the Hagedorn temperature for Rindler space.

7 Remarks on the string/black hole correspondence on the SL(2,R)/U(1)

cigar

In this section, we are interested in the opposite limit as that studied up to this point: we

comment on the behavior of the cigar CFT as we lower k to its critical value of k = 1 or

k = 3 for type II and bosonic strings respectively. Note that this is an on-shell change of

the black hole: no conical singularity is created during the process. It is known that several

phenomena occur at the critical value of k [66] and in this section we look at this limiting

process from the thermal scalar point of view. Qualitatively, one expects the string/black

hole correspondence point [67] to occur as soon as the black hole membrane [68] diverges to

infinity [69][48]. This corresponds to the thermal scalar becoming non-normalizable. The

SL(2,R)/U(1) black hole provides an exact setting where the corresponding string/black

hole phase transition can be better studied [66][70]. Even though the genus one partition

function is incapable of seeing this transition directly (the transition is driven by non-

perturbative effects), several suggestive clues will arise even at the one loop level. Moreover,

we will see a continuous transition between a random walk corresponding to a Hamiltonian

free-field trace, and a random walk coming from the discrete thermal scalar bound to the

black hole horizon, providing some explicit evidence of the final remark presented in the

previous section.

The string spectrum of the cigar CFT can be found in appendix A. We remind the reader

that for the discrete modes, the SL(2,R) quantum number j = M − l for l = 1, 2, . . .

and M is directly related to m. First of all, we note that the l = 1 state for the type II

superstring (the l = 2 state for the bosonic case) are exactly marginal for all values of k (if

28It would be very interesting to examine this statement in more detail, but we will not attempt this

here.
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they exist) [71]. As we lower k, we encounter the special value of k = 3. For this value of

k several things happen:

• The asymptotic linear dilaton Hagedorn temperature becomes equal to the Hawking

temperature.

• The wavefunctions of the discrete states all become non-normalizable as can be seen

by looking at the asymptotic linear dilaton behavior.

• The one-loop thermal partition function does not include any discrete states anymore,

in corroboration with the non-normalizability of the wavefunctions. In this setting,

the states are absent since the contour shift used in [26] does not cross poles anymore.

• The lowest weight state in the continuum becomes marginal.

Proofs of these statements can be found in appendix C. Exactly the same effects happen

for the superstring at k = 1. Of course, several of these features have been known from

previous work [66][72]. What we want to emphasize in this section is how the one-loop free

energy (and other thermodynamical quantities) behaves when approaching the critical k

value. As k approaches this value, the thermal scalar wavefunction spreads without bound,

until it disappears from the spectrum. Immediately thereafter, a continuous state takes

over its role. During this procedure, the dominant part of the free energy (coming from

the thermal scalar) changes in extensivity. For k > 3, this part scales as the area of the

horizon. For k = 3, the mode is sensitive to the entire volume of the space.

It is nice to see in the explicit formulas that this critical value indeed occurs as soon as the

continuous modes show Hagedorn behavior.29

We can now give a full picture of thermodynamics on the SL(2,R)/U(1) cigar (or the

near-extremal NS5 brane solution) as one varies k.

It was shown by Sugawara [50] that the thermal partition function can be written as a sum

of two contributions:

Z = Zfin + Zasympt, (7.1)

29In fact, we believe this continuous process sheds some light on the nature of the thermal scalar on black

hole horizons. We discussed earlier that the interpretation of the genus one partition function in terms of

the Hamiltonian trace is obscured since possibly interactions are included with an open string gas on the

horizon. We made this more explicit in section 6 by pointing out a difference in our treatment of the string

path integral and the genus 1 CFT result. This is not the case for the thermal scalar in the continuous

representation here since this one is asymptotically precisely the same as the linear dilaton thermal scalar,

yielding long string dominance for near-Hagedorn linear dilaton temperatures: this can be made explicit by

splitting the free energy in two contributions: one coming from the horizon and one from the asymptotic

linear dilaton space. The latter is insensitive to these subtleties about torus embeddings and corresponds

to non-interacting strings [71][73]. The process of lowering k results in a continuous transition between

dominance by the discrete thermal scalar living close to the horizon and the asymptotic continuous thermal

scalar giving long string dominance in a free-field trace of the asymptotic space. The nature of these states

appears to be the same and the free-field trace is expected to be sensitive to the same thermal scalar and

critical temperature as the genus one partition function (at least for this CFT), something we argued for

at the end of the previous section.
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a finite part coming from the tip of the cigar (containing both the discrete modes and

part of the continuum30) and an asymptotic part which diverges due to the infinite volume

available and which is precisely equal to the linear dilaton thermal partition function. This

translates into F = FA+FV , where FA scales like the transverse area of the black hole and

FV scales as the volume of the entire space.

Let us start by taking k very large. In this case, the background approaches Rindler space

and the free energy (∝ Z) is dominated by the thermal scalar. The thermodynamical quan-

tities have a random walk interpretation and are given by a localized contribution at string

length from the horizon. They have a part proportional to the volume (subdominant) and

a part proportional to the black hole area. It is the latter part that should be interpreted

as intrinsic to the black hole itself.

Lowering k invalidates the Rindler approximation. Nonetheless, roughly the same story

is valid when considering the thermal scalar wavefunction on the entire cigar geometry.

The random walk is spreading more and more from the tip of the cigar. Thermodynamic

quantities still satisfy the same scaling properties and the dominant contribution comes

from the discrete thermal scalar bound to the (Euclidean) horizon.

As soon as k reaches 1 (type II) or 3 (bosonic), the (discrete state) thermal scalar drops out

from the spectrum. When nearing this value of k, the random walk spreads without bound

over the entire cigar and becomes non-normalizable. At the same time, the asymptotically

linear dilaton thermal scalar (coming from the continuous part of Z) becomes massless.

The random walk of the latter looks asymptotically like the one studied in [29] for the linear

dilaton background. Not just the thermal scalar, but in fact all bound states disappear

from the spectrum at this point. The bound states are a typical feature of string theory

since they only exist because of the possibility of including winding numbers along the

cigar, a possibility that is absent for field theory. At k = 3 (or k = 1), only the continuous

spectrum remains.

It is also known that for this value of k, the black hole itself becomes non-normalizable

[66]. Also, infalling D0-branes change their radiation pattern [72]: normally most radiation

is incident on the black hole. When k reaches the critical value, a significant part of the

radiation propagates outwards, contrary to our intuition about black holes. This process

of lowering k is sketched in figure 5 below.

8 Higher genus partition functions and the thermal scalar

In this section we consider the influence of the higher genera on the critical behavior.

In [19] arguments were given using dual field theories and worldsheet factorization that

the Hagedorn temperature in general theories is non-limiting and that string perturbation

theory (in gs) actually breaks down near this temperature. It is of course interesting to

try to apply some of these arguments to the case of black hole horizons. Similarly to [19],

we will only focus on purely compact spaces for which the spectrum of the operator Ô (as

30This continuum part comes from the phase shift contribution in the density of states (or equivalently

the reflection amplitude of the gravitational potential).
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Figure 5: (a) Large k cigar background with random walk superimposed. Of course, in

reality the random walk is on the spatial submanifold only, but for illustrative purposes

we draw it like this. The (red) dashed line limits the spread of the discrete thermal scalar

in the radial direction. For very large k the flat Rindler approximation becomes accurate.

(b) Lowering k causes the discrete mode to spread radially. This invalidates the Rindler

approximation. Nonetheless, the mode retains its dominant character. (c) When k = 1, the

mode spreads without bound radially. The mode becomes non-normalizable and disappears

from the spectrum. Precisely at this point, the continuous thermal scalar takes over the

dominant behavior. (d) The same dominant random walk on the linear dilaton background.

The asymptotic parts of the random walks look the same for k = 1.

defined in (2.7)) is entirely discrete. In the first subsection we will analyze the influence of

a fixed higher genus contribution and in the second subsection we will consider the effect

of summing over the higher genus corrections. We follow [19] quite closely.

8.1 Higher genus partition functions

In this subsection we focus on the thermal partition function at fixed genus. Consider the

SL(2,R)/U(1) CFT (and its flat limit k → ∞). We follow the decomposition of higher

genus Riemann surfaces into propagators and 3-punctured spheres [75]. In general, higher

genus Riemann surfaces (can) have divergences when various cycles pinch. The moduli of

the propagators are sufficient to give the contribution from the boundary of moduli space,

which is what we need. In case of topologically stable thermal circles, it was shown [19]

that winding conservation prohibits all propagators from containing the thermal scalar.

For cigar-shaped thermal circles however, winding conservation is violated in scattering

amplitudes [23][24].

In [23][24] it was shown that n-point amplitudes can violate winding conservation by up

to n − 2 units, thus an amplitude such as 〈Vw=+1Vw=+1Vw=+1〉 or 〈Vw=−1Vw=−1Vw=−1〉
vanishes whereas 〈Vw=+1Vw=+1Vw=−1〉 or 〈Vw=+1Vw=−1Vw=−1〉 do not vanish and provide

the relevant 3-point amplitudes; a property which persists in the large k limit. Hence it is

possible in this case that all propagators contain the thermal scalar, simplifying the analy-
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sis.31 An explicit computation of this 3-string scattering amplitude will not be considered

here, but we make some further remarks on these in appendix D. In what follows we will

describe this decomposition in much more detail.

Following Polchinski [75], we cut open the worldsheet (path integral) along a cycle and

insert a complete set of states of local operators. Such a set of local operators have the

normalization on the 2-sphere:

〈Oi(∞)Oj(0)〉S2
∝ δhihj . (8.1)

We do not keep track of the overall normalization present in the Zamolodchikov metric

written above.

We then have (g = g1 + g2)32

〈1〉g =

∫
|q|<1

d2q

qq̄

∑
i,j

qhi q̄h̄i 〈Oi(z1)〉g1
〈Oj(z2)〉g2

, (8.2)

where a new modulus q is introduced (the sewing parameter), which should be integrated

over a unit disk.33 The intermediate set of states (labeled by i (and j)) come in a propagator

contribution, as can be seen by explicitly integrating over the modulus q. The cutting of

the surface is demonstrated in figure 6. The limit q → 0 corresponds to the pinching limit.

Figure 6: Cutting open of a genus two worldsheet. For the cutting displayed here, this

reduces it to two tori with single punctures and an intermediate propagator.

In this limit, the lowest conformal weight dominates in the same way as that the lowest

states dominate the one-loop partition function in the τ2 →∞ limit. We are interested in

the most dominant contribution that is temperature-dependent, implying that the thermal

scalar only is present in the intermediate vertex operators. The non-thermal massless

operators are not temperature-dependent even though their conformal weight becomes

equal to that of the thermal scalar at β = βH . In the present section, we suppose that the

wave operator Ô of the thermal scalar (defined in equation (2.7)) has a discrete spectrum

31One readily shows that this is possible without having to resort to giving any 3-point vertex a winding

number violation by more than one unit.
32The index j is restricted by hj = hi.
33The alternative way of cutting the CFT reduces the genus by 1 as:

〈1〉g =

∫
|q|<1

d2q

qq̄

∑
i,j

qhi q̄h̄i 〈Oi(z1)Oj(z2)〉g−1 . (8.3)

This way of cutting the worldsheet should be used as well in reducing the general genus g amplitude and

one readily adapts the formulas to incorporate also this procedure.
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ψn. Integrating over q and keeping only the dominant contribution, this yields:

〈1〉g ≈
1

h0 + h̄0
〈T0(z1)〉g1

〈T0(z2)〉g2
(8.4)

where 0 labels the state with lowest conformal weight of the thermal scalar T ; this can be

done cleanly due to the discreteness of the spectrum of Ô. We can rewrite it as

〈1〉g ≈ 〈T0|
1

L0 + L̄0
|T0〉 〈T0(z1)〉g1

〈T0(z2)〉g2
(8.5)

for the thermal scalar state T0. Cutting along several cycles finally reduces the higher

genus amplitude to a set of propagators and spheres with 3 punctures. One of the possible

outcomes for the genus 2 worldsheet is shown in figure 7 below. The 3-punctured spheres

Figure 7: Example of a full cutting of the genus two worldsheet into three propagators

and two 3-punctured spheres.

we need are the amplitudes of tree-level 3-thermal scalar scattering, which can in principle

be computed.

Consider as an example the degenerate limit of a genus-2 amplitude shown in figure 8.

Each propagator is dominated by the thermal scalar and behaves as ∼ 1/λ0. In string

Figure 8: Degenerate limit of the genus two surface in which the thermal scalar propagates

along each internal line.

language we obtain for this vacuum amplitude A:

A =
g2
s

λ3
0

〈T0T0T
∗
0 〉S2 〈T0T

∗
0 T
∗
0 〉S2 . (8.6)

Next we would like to obtain a spacetime interpretation of these 3-vertex interactions.

To that effect, let us consider the following off-shell 3-point function (figure 9) in the field

theory of the thermal scalar in coordinate space. For simplicity we are assuming that the

three-vertex has amplitude λ and does not include derivative interactions. Comments on

these issues are provided further on. With ∆(u,x) denoting the coordinate space scalar
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Figure 9: Three-point amplitude in field theory.

propagator, this amplitude equals

Axyz = gsλ

∫
du∆(u,x)∆(u,y)∆(z,u)

= gsλ

∫
du

∑
m,n,o

ψm(u)ψm(x)∗

λm

ψn(u)ψn(y)∗

λn

ψo(z)ψo(u)∗

λo
. (8.7)

It is clear from this expression that the amplitude gets its main support from that region

in space where the wavefunctions live.

Instead focussing on external states with fixed quantum numbers (l, r, s), we would mul-

tiply this expression by the suitable wavefunctions:

Alrs =

∫
dxψl(x)

∫
dyψr(y)

∫
dzψs(z)∗Axyz. (8.8)

This is the analog of Fourier transforming to momentum space in a translationally invariant

spacetime. We obtain

Alrs = gsλ

∫
du
ψl(u)

λl

ψr(u)

λr

ψs(u)∗

λs
. (8.9)

The propagator denominators are amputated to obtain the S-matrix elements and the u-

integral is the analog of δ(
∑
k) in a translationally invariant space. From this expression,

one sees that the amplitude Alrs is mainly supported at the locations where the wavefunc-

tions at the interaction location are relatively large.

In string theory, the three-vertex interaction (on the 2-sphere) can then be written in terms

of the above field theoretical formulas as

〈T0T0T
∗
0 〉S2 = λ

∫
duψ0(u)ψ0(u)ψ0(u)∗. (8.10)

Thus the stringy amplitude determines λ by stripping away the u-integral given above.

Having gained insight into the space dependence of the 3-point interactions, we return to

the genus 2 example given in equation (8.6) and we obtain:

A =
g2
s

λ3
0

λ2

∫
duψ0(u)ψ0(u)ψ0(u)∗

∫
dvψ0(v)ψ0(v)∗ψ0(v)∗, (8.11)

We should remark that in principle the field theoretic coupling constant λ will depend

on the quantum numbers of the field factors present in the interaction vertex in the La-
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grangian, but this does not cause any real difficulties.34

This amplitude can now be rewritten as

A = g2
sλ

2

∫∫
dudv

ψ0(u)ψ0(v)∗

λ0

ψ0(u)ψ0(v)∗

λ0

ψ0(u)∗ψ0(v)

λ0
(8.16)

≈ g2
sλ

2

∫∫
dudv 〈u| 1

L0 + L̄0
|v〉 〈u| 1

L0 + L̄0
|v〉 〈v| 1

L0 + L̄0
|u〉 . (8.17)

where in the second line, one should focus on the most dominant mode of the thermal

scalar (hence the approximation symbol).35

Both of these equalities teach us something about the higher genus amplitudes.

The first line makes it clear that the amplitude gets its contribution from the near-horizon

region (since that is where the thermal scalar wavefunction is supported). It shows that

higher genus amplitudes have in their dominating contribution only support close to the

tip of the cigar. This implies that even higher loop corrections cannot modify the fact that

the random walk has a string-scale spread from the horizon.36 This random walk will have

self-intersections (according to the above 3-point vertex), but it will still remain close to the

horizon. We are led to the conclusion that Susskind’s picture even holds when including

34In flat space, dependence of λ on the momentum quantum number is interpreted as a derivative inter-

action. In general, such a derivative is not diagonal in the basis ψl. One should presumably sum an entire

array of such derivative terms to obtain a diagonal quantity. The Lagrangian description in coordinate

space is hence not particularly useful. Writing the Lagrangian in coordinates diagonal in ψl is much better,

but obscures the spacetime interpretation. Let us be more explicit about this point. A general 3-point

interaction in field theory contains three field factors with some differential operators D̂1, D̂2 and D̂3 acting

on them. Expanding the fields in a complete set of eigenmodes of Ô, one gets:

L ⊃ gsλ
∫
dxD̂1T (x)D̂2T (x)D̂3T

∗(x) = gsλ
∑
l,m,n

alama
∗
n

∫
dxD̂1ψl(x)D̂2ψm(x)D̂3ψ

∗
n(x), (8.12)

where the c-numbers an represent the modes that should be integrated in the path integral. This basis

is diagonal in the relevant quantum numbers. The identification with string theory then proceeds by

identifying field theory and string amplitudes as

λ

∫
dxD̂1ψl(x)D̂2ψm(x)D̂3ψ

∗
n(x) = 〈TlTmT ∗n〉S2 , (8.13)

which allows an identification of the differential operators and of λ (which is now independent of the quantum

numbers l, m and n). This allows us to rewrite the interaction term in the field theory Lagrangian as

L ⊃ gsλ
∫
dxD̂1T (x)D̂2T (x)D̂3T

∗(x) = gs
∑
l,m,n

〈TlTmT ∗n〉S2 alama
∗
n. (8.14)

Finally, one should modify equation (8.11) into

A =
g2
s

λ3
0

λ2

∫
duD̂1ψ0(u)D̂2ψ0(u)D̂3ψ0(u)∗

∫
dvD̂∗1ψ0(v)∗D̂∗2ψ0(v)∗D̂∗3ψ0(v). (8.15)

35Again suitable insertions of the differential operators D̂1, D̂2, D̂3 should be made whenever necessary.
36Note that for instance in flat space, higher genus contributions would oscillate all over space, much like

the genus one contribution. In a microcanonical scene, one expects these corrections to contract the long

string into a stringy ball.
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higher loop interactions.

The second line (8.17) in the above formula is in the first-quantized particle language,

where the amplitude has the meaning of the following figure 10. The spatial shape of

Figure 10: First quantized Feynman graph corresponding to the above degenerate limit

of the genus two surface.

the first-quantized thermal scalar should be interpreted as the shape of the long string.

Note that the other possible degenerate limit of the genus-2 surface yields the same most

dominant contribution (8.11) as shown in figure 11.

(a) (b)

Figure 11: (a) Other degenerate limit of the genus two surface. (b) Point particle graph

of the alternate degenerate limit of the genus two surface.

The random walk picture is immediately distilled from this in a very explicit manner by

using the Schwinger trick on the propagators:37

1

L0 + L̄0
=

∫ +∞

0
dTe−(L0+L̄0)T (8.18)

and then giving a Lagrangian interpretation to this Hamiltonian picture amplitude. In this

picture, each propagator contains a proper time parameter (Schwinger parameter). What

one finds is that there is a set of open random walks with 3-point intersections. The loca-

tions of these interactions are also integrated over the entire space. The amplitude receives

the largest contribution from the near-horizon region. Note that the genus g diagram gives

rise to a g-loop random walk.

Also note that for instance graviton exchange by the long string is a subdominant effect

(compared to other amplitudes at the same genus) for topologically trivial thermal circles:

it has two separate 3-point interactions with a virtual graviton in between. This gets

translated to an effective 4-point vertex, which dominates if winding number is conserved

in interactions, which it is not in our case. This is shown in figure 12.

37In this formula, the ghost contribution is included in L0 and L̄0.
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(a)
(b)

Figure 12: (a) Graviton exchange by the long string. (b) Effective vertex of graviton

exchange by integrating out virtual particles.

For topologically non-trivial thermal circles, the lowest interaction vertices are 4-point ver-

tices, implying a different random walk intersection behavior. Such a 4-vertex arises by

summing over all possible internal lines between two 3-vertices. 3-vertices on the other

hand can only be associated to a pointlike interaction between three fields.

Of course, this reduction to particle path integrals, reintroduces UV divergences (at higher

genera manifested as point-vertices), although we know this is merely an artifact of our

approach.

For type II superstrings, we expect this picture to remain intact: the 3-punctured spheres

would have different values, the Hagedorn temperature would be different, but the strategy

and result would be the same.

As a summary, we conclude that at any fixed genus, the partition function is dominated

by the thermal scalar. The partition function behaves as a random walk with 3-point

interactions and is localized close to the black hole event horizon. Note though that the

propagator denominators actually force the partition function to diverge at β = βHawking

(as for the one-loop amplitude).

Of course, in string theory the different genera partition functions should be summed over

and we now turn to this question.

8.2 The perturbative genus expansion and its limitations

The single string partition function for topologically trivial thermal circles has the leading

form (as determined above):

Z1 = − ln(β − βH) +

+∞∑
n=1

Cn
g2n
s

(β − βH)3n
. (8.19)

In this case, for each genus only the leading divergence is kept. This result can be found

by using a double scaling limit as in [19] where gs → 0 and β → βH while keeping g2
s ∝

(β − βH)3. This limit ensures all other divergences at each genus scale out.

This expression can be seen to come directly from a field theory action. Consider the
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thermal scalar field theory action:38

S =

∫
dV
√
Ge−2Φ

[
T ∗ÔT + gsλD̂1TD̂2TD̂3T

∗ + (cc)
]
. (8.20)

In expanding the field T in a complete set of eigenfunctions of Ô with canonical normal-

ization, one only retains the lowest mode in the critical limit:

T (x) =
∑
n

anψn(x) ≈ a0ψ0(x). (8.21)

The action then reduces to

S ≈ λ0a0a
∗
0 + gs 〈T0T0T

∗
0 〉S2 a0a0a

∗
0 + (cc). (8.22)

The resulting critical diagrams then originate from the following theory:

Z1 = log

∫
dφdφ∗e−λ0φφ∗−gsφφ∗(λ̃φ+λ̃∗φ∗), (8.23)

where φ = a0 is a complex number and the coupling λ̃ = 〈T0T0T
∗
0 〉S2 . The lowest eigenvalue

λ0 ∼ β − βH . With these definitions, one readily finds explicitly the expansion

Z1 = − lnλ0 +
6g2
s |λ|

2

λ3
0

+
162g4

s |λ|
4

λ6
0

+ . . . (8.24)

agreeing with the previous expansion (8.19) and concretely giving values for the coefficients.

Clearly taking λ0 → 0 results in an infinite partition function: higher order terms are

needed to determine the full (interacting) thermal scalar action.

If this scaling limit is not followed, additional contributions should be added to the func-

tional integral (corresponding to the subleading corrections at each genus). These introduce

4-point interactions (and higher). As it stands, the above integral is non-perturbatively

defined (although infinite in the absence of higher order corrections). Just like in [19], the

thermal scalar potential can in principle be determined in this way.

The punch line is that the string perturbation series (the genus expansion) is not good in

this case. In [19] this was argued for for topologically stable thermal circles, where the

perturbation series was seen to break down near the Hagedorn temperature. In this case

however, since TH = THawking, we conclude that string perturbation theory on the ther-

mal manifold breaks down for a general uncharged black hole at its Hawking temperature.

Despite several less rigorous steps in the above derivation39, we believe this conclusion is

difficult to avoid. In any case, the one-loop result already shows that problems arise and

38The D̂ operators are differential operators that have been defined in a footnote earlier. cc denotes the

complex conjugate term of the second term in this expression.
39We did not explicitly construct the Zamolodchikov metric nor the three-point functions. The only thing

we need from these however is that they are finite (and non-zero), which is something we did discuss here.

– 38 –



this feature is apparently not solved by summing higher genus contributions.

Other relevant work concerning the Hagedorn transition at finite string coupling (but using

holographic methods instead) can be found in [76][77][78].

If gs is strictly zero however, all higher genus amplitudes vanish and Susskind’s (non-

interacting) long string picture is valid. As soon as any form of interaction is allowed

(gs not strictly zero, but arbitrarily small), the higher genus amplitudes do not vanish

and a resummation is necessary. This is in agreement with Susskind’s prediction that

interactions, if present, will always become important close to the event horizon. The fact

that setting gs to zero gives an infinite free energy density does not seem so strange: the

string becomes arbitrarily long and intersects itself numerous times effectively giving an

infinite density of string everywhere. This is intuitively obvious: non-compact dimensions

are always larger than the string itself thus reducing the ‘chance’ of a piece of string

returning to the same location. For compact spaces, the string feels the boundaries and

is forced to pass through the same location over and over again [10]. A cartoon is given

in figure 13. A related point was also made by Susskind: he argues that higher order

Figure 13: (a) Random walk in an uncompact space. The random walk is not densily

packed as it can safely avoid an unconstrained number of self-crossings. (b) In a compact

space, the random walk is forced to pass through the same point over and over. This causes

the density of string to diverge which manifests itself in an infinite free energy density.

interactions should become important as g2
sρ`

d−2
s becomes of order 1, with ρ the number of

string crossings per unit horizon area and d the spacetime dimensionality. This argument

was made in a single-string (microcanonical) picture. In our case, the condition (for the

most dominating contribution; this is the worst case scenario) is instead g2
s

1
(β−βH)3 `

3
s of

order 1. This suggests some proportionality:

ρ ∝ `5−ds

(β − βH)3
(8.25)

and equating the temperature to the Hawking temperature hence immediately leads to an

infinite number of string crossings ρ per unit horizon area. As long as gs 6= 0, higher order

terms in the perturbation series are not negligible.
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We conclude that as soon as gs is non-zero, one should not use the perturbation series

anymore.

9 Conclusion

Building upon our earlier work [1], we provided some additional ideas on the thermal

scalar near black hole horizons (effectively in Rindler space) and the role it plays in de-

scribing string thermodynamics. We emphasized the relevance of the highly excited string

for (one-loop) black hole thermodynamics: there is some tension between solely consid-

ering thermodynamical properties of massless fields and the entire string. We provided

an argument in favor of the lowest order in α′ thermal scalar action for heterotic strings

in Rindler space. We also provided a more elaborate comparison of the large k limit of

the cigar orbifold partition functions and the partition functions of the flat cones. We

found detailed agreement. The twisted sectors do not have IR divergences which we used

to compare even the numerical prefactors. A formula was written down that relates the

2d area with the level k and the modular invariant regulator ε introduced in [22]. Such a

procedure led to a deeper understanding of the link between both models: in particular,

the disappearance of higher winding modes and the link between continuations in N in

both models was elaborated upon. Using these exact limits as an inspiration, we discussed

the two different approaches that can be identified to study string thermodynamics in a

space with a contractible thermal circle. We were led to the fact that the exact CFT re-

sults include interactions with an open string gas on the horizon and that the free closed

string trace is encapsulated in the path integral approach with boundary conditions with

fixed wrapping numbers as we studied in the near-Hagedorn regime in [18]. The latter

path integral can be directly related to such a path integral in the fundamental domain

and hence is modular invariant as well. Both approaches lead to different physics: the

full genus 1 result is to be combined with the higher genera to give the full thermal free

energy. It is also this one that should be used to indicate backreaction of the thermal gas

on the background. The fixed wrapping number path integral on the other hand describes

manifestly non-interacting closed string propagation and hence this should correspond to

the free-field trace. Next, we gave some additional remarks on the critical k value for the

SL(2,R)/U(1) cigar from the thermal scalar perspective. Finally we analyzed the contri-

butions to thermodynamics from higher genera. We concluded that for each fixed genus,

the random walk can split with 3-point bifurcations (the number of such events determines

the genus). The full perturbation series however needs to be resummed and the genus

expansion itself appears to break down in this case.

As a general conclusion, it seems clear that the topic of string thermodynamics in a space

with a horizon is still far from understood completely, but it is our hope that we have

proposed some suggestive ideas (supported by computations) that would enable a full

understanding of this subject in the (hopefully near) future.
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A Spectrum on the SL(2,R)/U(1) cigar CFT

In this appendix, we write down the spectrum of strings on the SL(2,R)/U(1) cigar CFT.

The winding w around the cigar and discrete momentum n are combined into two combi-

nations

m =
n+ kw

2
, m̄ =

−n+ kw

2
, n, w ∈ Z. (A.1)

The quantum number j is proportional to the radial momentum and is given by

j = −1

2
+ is, s ∈ R, continuous representations, (A.2)

j = M − l, l = 1, 2, ..., discrete representations, (A.3)

where M = min(m, m̄) with m, m̄ > 1/2 [25]. For the discrete representations, j has the

following unitarity constraints:

−1

2
< j <

k − 3

2
, bosonic, (A.4)

−1

2
< j <

k − 1

2
, type II. (A.5)

The conformal weights of the states are given by

h =
m2

k
− j(j + 1)

k − 2
, h̄ =

m̄2

k
− j(j + 1)

k − 2
, bosonic, (A.6)

h =
m2

k
− j(j + 1)

k
, h̄ =

m̄2

k
− j(j + 1)

k
, type II. (A.7)

B Proof of the McClain-Roth-O’Brien-Tan theorem from the torus path

integral

In this appendix, we will be more explicit in the general proof of this theorem [58][59]. The

proof splits in two parts: first the modular transformation properties of the two wrapping

numbers is distilled. Then in the second part it is shown that these are sufficient to perform

the extension to the strip domain while dropping one wrapping number.

B.1 Part 1: Modular transformations of the wrapping numbers

Assume the general path integral on the fundamental domain has a periodic coordinate

X ∼ X + 2πR. Then this path integral is considered with the set of boundary conditions

X(σ1 + 2π, σ2) = X(σ1, σ2) + 2πwR, (B.1)

X(σ1 + 2πτ1, σ
2 + 2πτ2) = X(σ1, σ2) + 2πmR, (B.2)
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with a flat worldsheet metric in the action. This form is particularly suited to our task

since all dependence on τ and on the wrapping numbers is fully extracted from the action

into the boundary conditions.

The entire path integral is modular invariant and the modular group PSL(2,Z) is generated

by the T and S transformations. Consider first the T transformation τ → τ+1. The second

boundary condition then gets translated into

X(σ1 + 2π(τ1 + 1), σ2 + 2πτ2) = X(σ1 + 2πτ1, σ
2 + 2πτ2) + 2πwR = X(σ1, σ2) + 2πmR,

(B.3)

yielding

X(σ1 + 2πτ1, σ
2 + 2πτ2) = X(σ1, σ2) + 2π(m− w)R. (B.4)

Hence upon making the replacement m → m + w (or m′ = m − w), the invariance is

established.

Secondly we consider the S-transformation τ → −1/τ . To start with, we first make a

scaling coordinate transformation on the worldsheet as

z′ = −z
τ
, z = σ1 + iσ2, z′ = σ′1 + iσ′2. (B.5)

As long as the non-linear sigma model satisfies the Einstein equations, it is conformal and

the above scaling symmetry has no effect on the action itself (it gets transformed into the

same action with primed coordinates). The boundary conditions however are not the same

anymore (corresponding to the fact that these transformations are not in the CKG of the

torus). Explicitly, we obtain

σ′1 = −σ
1τ1 + σ2τ2

|τ |2
, σ′2 = −−σ

1τ2 + σ2τ1

|τ |2
. (B.6)

These new coordinates are shown in figure 14. In these new worldsheet coordinates, the

Figure 14: Worldsheet coordinates and torus with modulus τ . The new (primed) coordi-

nates are also shown.
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two torus cycles are described as

(σ1, σ2) ∼ (σ1 + 2π, σ2)→ (σ′1, σ′2) ∼
(
σ′1 − 2πτ1

|τ |2
, σ′2 +

2πτ2

|τ |2

)
, (B.7)

(σ1, σ2) ∼ (σ1 + 2πτ1, σ2 + 2πτ2)→ (σ′1, σ′2) ∼ (σ′1 − 2π, σ′2). (B.8)

Up to this point, only passive transformations were used. Next, we do the S-transformation,

which yields the final transformed boundary conditions:

X(σ′1 + 2πτ1, σ
′2 + 2πτ2) = X(σ′1, σ′2) + 2πwR, (B.9)

X(σ′1 − 2π, σ′2) = X(σ′1, σ′2) + 2πmR. (B.10)

The substitution

w → m, m→ −w, (B.11)

or (w′ = −m and m′ = w) then shows that the S-transformation is a symmetry.

To summarize, the following modular transformation properties are found:

T : m→ m+ w, (B.12)

S : m→ −w, w → m. (B.13)

B.2 Part 2: SL(2,Z) manipulations

The second phase of the proof consists of showing that the above modular transformation

properties of m and w are enough to transform the fundamental domain into the strip. This

part actually goes identically the same as for flat space [58][59]. Because of this reason,

we will go rather quickly through the necessary steps. The goal is clear: find out what

modular transformation on τ needs to be done to ensure that the (m, w) doublet gets

transformed into (m, 0) and at the same time build up the remaining regions of the strip.

Firstly, it is known that the set of modular transformations on τ (with composition of

transformations) is isomorphic (as a group) to the set of PSL(2,Z) matrices, equiped with

matrix multiplication. A modular transformation and a SL(2,Z) matrix are identified as

aτ + b

cτ + d
⇔

[
a b

c d

]
, (B.14)

and the T and S generators of this group are given by

T =

[
1 1

0 1

]
, S =

[
0 −1

1 0

]
. (B.15)

As is well-known, c and d should be relatively prime by the determinantal condition ad−
bc = 1. The quantum numbers m and w then form a doublet of this group action, where

the column vector

[
m

w

]
transforms under PSL(2,Z) by left multiplication. The SL(2,Z)

element that we seek is hence of the form[
a b

c d

][
m

w

]
=

[
X

0

]
, (B.16)
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where the two bottom elements c and d are determined by cm + dw = 0 or cm = −dw.

Let the gcd of m and w be r. Then the only possibility for relatively prime c and d is the

solution c = w
r and d = −m

r .

For fixed c and d, the top elements a and b are restricted by the determinantal condition

and one readily shows that the only freedom left is (a, b) → (a + λc, c + λd) for λ ∈ Z.

These elements can all be obtained from one such element M by left multiplication by T

as T λM . Hence it is clear that only 1 value of λ exists for which the resulting modulus is

located in the strip region. Moreover, any two matrices that do not have the same c and d

do not have any overlap in the strip region. It is also clear that the strip is built up entirely

since PSL(2,Z) fully generates the upper half plane from the fundamental domain. The

SL(2,Z) element is fully fixed by this and the transformed modulus is related to the initial

one as

τ ′ =
aτ + b

cτ + d
. (B.17)

The value X equals −r (due to the determinantal condition).

As a summary of these steps, in a schematic fashion, one manipulates the expression as

∑
m,w

∫
F(m,w)

→
+∞∑
r=1

∑
[c,d]=1

∫
F(m,w)

→ 2

+∞∑
r=1

∫
E(−r,0)

(B.18)

and r takes over the role of the single wrapping number in the strip.

Note further that the worldsheet transformation z → −z is equivalent to replacingm→ −m
and w → −w. Doing this, one finds that X = +r instead, showing the symmetry r → −r
in the resulting path integral. We can hence double the range of r which destroys an extra

factor of 2 we created earlier (B.18) by having both (c, d) and (−c, −d) map to the same

r-number.

In all of these manipulations, the (m = 0, w = 0) sector transforms as a singlet under the

modular group and this is hence not altered: no build-up of the strip domain is present for

this state and in the end it is still integrated over the modular fundamental domain.

C Proof of the claims in section 7

Let us take the cigar metric and dilaton (for bosonic strings) as [28][21][1]

ds2 =
α′

4
(k − 2)

[
dr2 +

4

coth2
(
r
2

)
− 2

k

dθ2

]
, (C.1)

Φ = −1

2
ln

(
sinh(r)

2

√
coth2

(r
2

)
− 2

k

)
. (C.2)
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We rescale the coordinates as ρ =

√
α′(k−2)

2 r and θnew =
√
α′(k − 2)θold, which gives

ds2 =

dr2 +
1

coth2

(
ρ√

α′(k−2)

)
− 2

k

dθ2

 , (C.3)

Φ = −1

2
ln

sinh

(
2√

α′(k−2)
ρ

)
2

√√√√coth2

(
ρ√

α′(k − 2)

)
− 2

k

 . (C.4)

Taking the coordinates very large ρ�
√
α′(k − 2), we arrive at a linear dilaton background

(as expected), but with an unconventional coordinate scaling:

ds2 =

[
dρ2 +

1

1− 2
k

dθ2

]
, (C.5)

Φ = Φ0 −
1√

α′(k − 2)
ρ. (C.6)

We see now that a further rescaling as θnew =
√

k
k−2θold yields the standard linear dilaton

background. The Hawking temperature in the new θ coordinate is βHawking = 2π
√
α′k.

The linear dilaton background has a Hagedorn temperature equal to

β2
H = 4π2α′

(
4− 1

k − 2

)
. (C.7)

The value of k where the asymptotic Hagedorn temperature (being the linear dilaton case)

and the Hawking temperature are equal is at k = 3. Analogously (but slightly easier) one

can perform the computation for the type II superstring and one finds k = 1 as the critical

value.

Let us look at the cigar spectrum (written down in appendix A) and determine when w = 1

states drop from the spectrum. We focus on n ≥ 0 states (the other case is actually the

same). For a discrete state we have that

j =
n+ kw

2
− l, l = 1, 2, . . . (C.8)

The bosonic unitarity constraints reduce to (for w = 1)

l >
n+ 3

2
, (C.9)

l <
n+ k + 1

2
. (C.10)

Clearly the value of n is irrelevant for the number of allowed l-values and only for k > 3, we

can have states satisfying these constraints. Moreover, at precisely k = 3, the constraints

l >
n+ 3w

2
, (C.11)

l <
n+ 3w + 1

2
, (C.12)
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cannot be satisfied for any n and w, implying that there are no discrete states at all. For

lower values of k some discrete states may reappear into the spectrum. One can also see

this in the thermal partition function [26], where these unitarity constraints are represented

as a contour-shift that either encircles poles or not. For the type II superstring, the first

constraint is replaced by l > n+1
2 leading to k = 1 as the critical value.

One can also find this critical value of k by looking at the asymptotics (large ρ) of the

wavefunctions (imposing normalizability). Setting α′ = 2, the measure factor
√
Ge−2Φ is

proportional to

e
√

2/(k−2)ρ (C.13)

and the states have asymptotics

ψ ∝ e−
√

2/(k−2)(j+1)ρ, (C.14)

which leads to the same value k = 3 (or k = 1 for type II strings).

A final characterization of this value is found by looking at the continuum. Assuming that

the continuous quantum number s does not give a contributing τ2-dependent exponential

correction (as we have seen happens in fact for the linear dilaton background discussed

elsewhere [29]), we find that the continuum state becomes marginal when40

1

4(k − 2)
+
k

4
= 1⇔ k = 3 (C.15)

and analogously for the type II superstring.

We remark that for both k larger and smaller than this critical value, this state is non-

tachyonic, it can only become marginal when this critical value of k is reached.

Note also that this state is the thermal scalar of the asymptotic linear dilaton background.

Indeed, allowing β to vary, we would write41

1

4(k − 2)
+
k

4

β2

4π2kα′
= 1 ⇔ βH = 2π

√(
4− 1

k − 2

)
α′, (C.16)

or for type II strings:

1

4k
+
k

4

β2

4π2kα′
=

1

2
⇔ βH = 2π

√(
2− 1

k

)
α′, (C.17)

which are indeed the correct Hagedorn temperatures of the linear dilaton background. In

particular for only flat extra dimensions, we can relate this to the non-critical flat spaces

upon setting Q2 = 4
(k−2)α′ = 426−D

6α′ ,42 where the parameter Q is conventionally defined as

Φ = Q
2 X

d with d the linear dilaton direction.

40In principle one should integrate over the s-quantum number. The density of states of this model

and that of the AdS3 WZW model are given by the same expression, and we have shown in [60] that the

integration over s can not yield a correction to the critical temperature.
41From the cigar perspective, this off-shell generalization can be found by first considering conical orbifold

models. This would cause the replacement kw2

4 → kw2

4N2 in the conformal weights. Then we reinterpret 1
N

as β
βHawking

to arrive at the correct result.
42For type II superstrings, we have instead Q2 = 4

kα′ = 10−D
α′ .
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D Discussion on non-normalizable versus normalizable vertex operators

The computations given in [23][24] and [25] focus on non-normalizable observables and

these give a series of poles for the n-point functions. One should distill the residue of these

poles to obtain the S-matrix elements. These then correspond to n-point functions of the

associated normalizable operators and these should be finite. This solves an initial worry

one might have in that the Zamolodchikov metric might diverge or the 3-point functions

might vanish. As an extra reassurance, the four-point amplitude for non-normalizable

observables for the AdS3 model was computed in [79] where an intermediate virtual discrete

state was found indeed, suggesting the inverse Zamolodchikov metric for such states is non-

zero. These correlation functions in AdS3 are directly related to those of the cigar CFT

and again one should zoom in on the LSZ residue instead to obtain the required stringy

amplitudes obtained by normalizable vertex operators.

The link between the normalizable and non-normalizable vertex operators is

Onon-norm =
1

pole
Onorm. (D.1)

In more detail, for large φ the vertex operators behave as [80]:43

Vj,m,m̄ ∼ eiQmY
(
eQjφ +

1

pole
e−Q(j+1)φ + . . .

)
. (D.2)

Then multiplying by the pole contribution distills purely the normalizable part of the

vertex operator. Indeed, it is this asymptotic behavior that we used in constructing the

normalizable string fluctuations for Euclidean Rindler space in [1]. The reader should

compare this to equation (C.14). Moreover, the pole spectrum of the non-normalizable

2-point functions, originally constructed to be the spectrum of states in the dual LST [25],

is also the discrete spectrum of the cigar CFT.44 The discrete part of both Hilbert spaces

is then indeed the same.

Since the 2-point function of non-normalizable vertex operators has only a single pole, we

immediately deduce that the 2-point function of normalizable operators (the scattering

amplitude) vanishes, just like in flat space. Schematically,

〈OnormOnorm〉 = pole2 〈Onon-normOnon-norm〉 = 0. (D.3)
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