47 research outputs found

    Renormalization-Group Improved Prediction for Higgs Production at Hadron Colliders

    Full text link
    We use renormalization-group methods in effective field theory to improve the theoretical prediction for the cross section for Higgs-boson production at hadron colliders. In addition to soft-gluon resummation at NNNLL, we also resum enhanced contributions of the form (C_A\pi\alpha_s)^n, which arise in the analytic continuation of the gluon form factor to time-like momentum transfer. This resummation is achieved by evaluating the matching corrections arising at the Higgs-boson mass scale at a time-like renormalization point \mu^2<0, followed by renormalization-group evolution to \mu^2>0. We match our resummed result to NNLO fixed-order perturbation theory and give numerical predictions for the total production cross section as a function of the Higgs-boson mass. Resummation effects are significant even at NNLO, where our improved predictions for the cross sections at the Tevatron and the LHC exceed the fixed-order predictions by about 13% and 8%, respectively, for m_H=120 GeV. We also discuss the application of our technique to other time-like processes such as Drell-Yan production, e^+ e^- --> hadrons, and hadronic decays of the Higgs boson.Comment: 35 pages, 6 figures; v2: update to MSTW2008 PDFs, detailed comparison with moment-space formalism; v3: typo in equation (A.3) correcte

    Forward-Backward and Charge Asymmetries in the Standard Model

    Full text link
    This talk reviews the Standard Model predictions for the top-quark forward backward and charge asymmetries measured at the Tevatron and at the LHC.Comment: 8 pages, 2 figures. Proceedings of CKM 2012, the 7th International Workshop on the CKM Unitarity Triangle, University of Cincinnati, USA, 28 September - 2 October 201

    Updated Predictions for Higgs Production at the Tevatron and the LHC

    Full text link
    We present updated predictions for the total cross section for Higgs boson production through gluon fusion at hadron colliders. In addition to renormalization-group improvement at next-to-next-to-next-to-leading logarithmic accuracy, we incorporate the two-loop electroweak corrections, which leads to the most precise predictions at present. Numerical results are given for Higgs masses between 115 GeV and 200 GeV at the Tevatron with \sqrt{s}=1.96 TeV and the LHC with \sqrt{s}=7-14 TeV.Comment: 8 pages, 2 figures. v2: combined PDF+alpha_s uncertainties included; results using NNPDF2.0 added; upgrade CTEQ6.6->CT1

    Enabling Logic Computation Between Ta/CoFeB/MgO Nanomagnets

    Get PDF
    Dipolar coupled magnets proved to have the potential to be capable of successfully performing digital computation in a highly parallel way. For that, nanomagnet-based computation requires precise control of the domain wall nucleation from a well-localized region of the magnet. Co/Pt and Co/Ni multilayer stacks were successfully used to demonstrate a variety of computing devices. However, Ta/CoFeB/MgO appears more promising, thanks to the lower switching field required to achieve a full magnetization reversal, reduced thickness (less than 10 nm), and its compatibility with magnetic tunnel junctions. In this work, the switch of the information is achieved through the application of a magnetic field, which allows to scale more the nanomagnets with respect to current-driven magnetization reversal-based devices and to go toward 3-D structures. We experimentally demonstrate that Ga ions can be used to tune the energy landscape of the structured magnets to provide signal directionality and achieve a distinct logic computation. We prove that it is possible to define the artificial nucleation center (ANC) in different structures with two irradiation steps and that this approach can enable logic computation in ultrathin films by dipolar interaction. Moreover, different from previous studies, the results coming from the irradiation analysis are then used for real logic devices. We present the experimental demonstration of a set of fully working planar inverters, showing that it is possible to reach a coupling field between the input and the output, which is strong enough to reliably implement logic operations. Micromagnetic simulations are used to study the nucleation center's effectiveness with respect to its position in the magnet and to support the experiments. Our results open the path to the development of more efficient nanomagnet-based logic circuits

    Experimental Demonstration of a Rowland Spectrometer for Spin Waves

    Full text link
    We experimentally demonstrate the operation of a spin-wave Rowland spectrometer. In the proposed device geometry, spin waves are coherently excited on a diffraction grating and form an interference pattern that spatially separates spectral components of the incoming signal. The diffraction grating was created by focused-ion-beam irradiation, which was found to locally eliminate the ferrimagnetic properties of YIG, without removing the material. We found that in our experiments spin waves were created by an indirect mechanism, by exploiting nonlinear resonance between the grating and the coplanar waveguide. Our work paves the way for complex spin-wave optic devices -- chips that replicate the functionality of integrated optical devices on a chip-scale.Comment: 7 pages, 5 figures, presented at Joint European Magnetic Symposia (JEMS) 202

    Controlling Domain-Wall Nucleation in Ta/CoFeB/MgO Nanomagnets via Local Ga+ Ion Irradiation

    Get PDF
    Comprehensive control of the domain wall nucleation process is crucial for spin-based emerging technologies ranging from random-access and storage-class memories over domain-wall logic concepts to nanomagnetic logic. In this work, focused Ga+ ion-irradiation is investigated as an effective means to control domain-wall nucleation in Ta/CoFeB/MgO nanostructures. We show that analogously to He+ irradiation, it is not only possible to reduce the perpendicular magnetic anisotropy but also to increase it significantly, enabling new, bidirectional manipulation schemes. First, the irradiation effects are assessed on film level, sketching an overview of the dose-dependent changes in the magnetic energy landscape. Subsequent time-domain nucleation characteristics of irradiated nanostructures reveal substantial increases in the anisotropy fields but surprisingly small effects on the measured energy barriers, indicating shrinking nucleation volumes. Spatial control of the domain wall nucleation point is achieved by employing focused irradiation of pre-irradiated magnets, with the diameter of the introduced circular defect controlling the coercivity. Special attention is given to the nucleation mechanisms, changing from a Stoner-Wohlfarth particle's coherent rotation to depinning from an anisotropy gradient. Dynamic micromagnetic simulations and related measurements are used in addition to model and analyze this depinning-dominated magnetization reversal

    RG-improved single-particle inclusive cross sections and forward-backward asymmetry in ttˉt\bar t production at hadron colliders

    Full text link
    We use techniques from soft-collinear effective theory (SCET) to derive renormalization-group improved predictions for single-particle inclusive (1PI) observables in top-quark pair production at hadron colliders. In particular, we study the top-quark transverse-momentum and rapidity distributions, the forward-backward asymmetry at the Tevatron, and the total cross section at NLO+NNLL order in resummed perturbation theory and at approximate NNLO in fixed order. We also perform a detailed analysis of power corrections to the leading terms in the threshold expansion of the partonic hard-scattering kernels. We conclude that, although the threshold expansion in 1PI kinematics is susceptible to numerically significant power corrections, its predictions for the total cross section are in good agreement with those obtained by integrating the top-pair invariant-mass distribution in pair invariant-mass kinematics, as long as a certain set of subleading terms appearing naturally within the SCET formalism is included.Comment: 55 pages, 14 figures, 6 table

    Association of growth with neurodevelopment in extremely low gestational age infants: a population-based analysis.

    Get PDF
    To assess the association between postnatal growth and neurodevelopment at the age of 2 years in extremely low gestational age newborns (ELGAN, < 28 weeks' gestation). Retrospective population-based cohort study including all live born ELGAN in 2006-2012 in Switzerland. Growth parameters (weight, length, head circumference, body mass index) were assessed at birth, at hospital discharge home, and 2-year follow-up (FU2). Unadjusted and adjusted regression models assessed associations between growth (birth to hospital discharge and birth to FU2) and neurodevelopment at FU2. A total of 1244 infants (mean GA 26.5 ± 1.0 weeks, birth weight 853 ± 189 g) survived to hospital discharge and were included in the analyses. FU2 was documented for 1049 (84.3%) infants. The mean (± SD) mental and a psychomotor development index at 2FU were 88.9 (± 18.0) and 86.9 (± 17.7), respectively. Moderate or severe neurodevelopmental impairment was documented in 23.2% of patients. Changes of z-scores between birth and discharge and between birth and FU2 for weight were - 1.06 (± 0.85) and - 0.140 (± 1.15), for length - 1.36 (± 1.34), and - 0.40 (± 1.33), for head circumference - 0.61 (± 1.04) and - 0.76 (± 1.32) as well as for BMI 0.22 (± 3.36) and - 0.006 (± 1.45). Unadjusted and adjusted analyses showed that none of the four growth parameters was significantly associated with any of the three outcome parameters of neurodevelopment. This was consistent for both time intervals. CONCLUSION In the present population-based cohort of ELGAN, neither growth between birth and hospital discharge nor between birth and FU2 were significantly associated with neurodevelopment at age of 2 years. WHAT IS KNOWN • Studies assessing the association between growth and neurodevelopment in extremely low gestational age newborns (28 weeks' gestation) show conflicting results. WHAT IS NEW • Neither growth between birth and hospital discharge nor between birth and corrected age of 2 years were significantly associated with neurodevelopment at age of 2 years. • The role of postnatal growth as a predictor of neurodevelopmental outcome during infancy might be smaller than previously assumed

    Bacterial tolerance to host-exuded specialized metabolites structures the maize root microbiome.

    Get PDF
    Plants exude specialized metabolites from their roots, and these compounds are known to structure the root microbiome. However, the underlying mechanisms are poorly understood. We established a representative collection of maize root bacteria and tested their tolerance against benzoxazinoids (BXs), the dominant specialized and bioactive metabolites in the root exudates of maize plants. In vitro experiments revealed that BXs inhibited bacterial growth in a strain- and compound-dependent manner. Tolerance against these selective antimicrobial compounds depended on bacterial cell wall structure. Further, we found that native root bacteria isolated from maize tolerated the BXs better compared to nonhost Arabidopsis bacteria. This finding suggests the adaptation of the root bacteria to the specialized metabolites of their host plant. Bacterial tolerance to 6-methoxy-benzoxazolin-2-one (MBOA), the most abundant and selective antimicrobial metabolite in the maize rhizosphere, correlated significantly with the abundance of these bacteria on BX-exuding maize roots. Thus, strain-dependent tolerance to BXs largely explained the abundance pattern of bacteria on maize roots. Abundant bacteria generally tolerated MBOA, while low abundant root microbiome members were sensitive to this compound. Our findings reveal that tolerance to plant specialized metabolites is an important competence determinant for root colonization. We propose that bacterial tolerance to root-derived antimicrobial compounds is an underlying mechanism determining the structure of host-specific microbial communities
    corecore