1,799 research outputs found
Testing Verlinde's emergent gravity in early-type galaxies
Verlinde derived gravity as an emergent force from the information flow,
through two-dimensional surfaces and recently, by a priori postulating the
entanglement of information in 3D space, he derived the effect of the
gravitational potential from dark matter (DM) as the entropy displacement of
dark energy by baryonic matter. In Emergent Gravity (EG) this apparent DM
depends only on the baryonic mass distribution and the present-day value of the
Hubble parameter. In this paper we test the EG proposition, formalized by
Verlinde for a spherical and isolated mass distribution, using the central
velocity dispersion, and the light distribution in a sample of 4260
massive and local early-type galaxies (ETGs) from the SPIDER sample. Our
results remain unaltered if we consider the sample of 807 roundest field
galaxies. We derive the predictions by EG for the stellar mass-to-light ratio
(M/L) and the Initial Mass Function (IMF), and compare them with the same
inferences derived from a) DM-based models, b) MOND and c) stellar population
models. We demonstrate that, consistently with a classical Newtonian framework
with a DM halo component, or alternative theories of gravity as MOND, the
central dynamics can be fitted if the IMF is assumed non-universal. The results
can be interpreted with a IMF lighter than a standard Chabrier at low-,
and bottom-heavier IMFs at larger . We find lower, but still
acceptable, stellar M/L in EG theory, if compared with the DM-based NFW model
and with MOND. The results from EG are comparable to what is found if the DM
haloes are adiabatically contracted and with expectations from spectral
gravity-sensitive features. If the strain caused by the entropy displacement
would be not maximal, as adopted in the current formulation, then the dynamics
of ETGs could be reproduced with larger M/L. (abridged)Comment: 12 pages, 2 figures, submitted to MNRAS. The updated manuscript
presents significantly altered conclusions, after discovering an internal bug
in an older version of the Mathematica package, leading to incorrect
numerical results when calculating the derivatives of Gamma function
The extinction by dust in the outer parts of spiral galaxies
To investigate the distribution of dust in Sb and Sc galaxies we have
analyzed near-infrared and optical surface photometry for an unbiased sample of
37 galaxies. Since light in the -band is very little affected by extinction
by dust, the colour is a good indicator of the amount of extinction, and
using the colour-inclination relation we can statistically determine the
extinction for an average Sb/Sc galaxy. We find in general a considerable
amount of extinction in spiral galaxies in the central regions, all the way out
to their effective radii. In the outer parts, at D, or at 3 times the
typical exponential scale lengths of the stellar distribution , we find a
maximum optical depth of 0.5 in for a face-on galaxy. If we impose the
condition that the dust is distributed in the same way as the stars, this upper
limit would go down to 0.1.Comment: 4 pages, postscript, gzip-compressed, uuencoded, includes 2 figures.
Accepted for publication in Astronomy & Astrophysics, Letter
ISO-SWS spectroscopy of NGC 1068
We present ISO-SWS spectroscopy of NGC 1068 for the wavelength range 2.4 to
45um, detecting a total of 36 emission lines. Most of the observed transitions
are fine structure and recombination lines originating in the narrow line
region. We compare the line profiles of optical lines and reddening-insensitive
infrared lines to constrain the dynamical structure and extinction properties
of the NLR. The considerable differences found are most likely explained by two
effects. (1) The spatial structure of the NLR is a combination of a highly
ionized outflow cone and lower excitation extended emission. (2) Parts of the
NLR, mainly in the receding part at velocities above systemic, are subject to
extinction that is significantly suppressing optical emission. Line asymmetries
and net blueshifts remain, however, even for infrared fine structure lines
suffering very little obscuration. This may be either due to an intrinsic
asymmetry of the NLR, or due to a very high column density obscuring component
which is hiding part of the NLR even from infrared view. Mid-infrared emission
of molecular hydrogen in NGC 1068 arises in a dense molecular medium at
temperatures of a few hundred Kelvin that is most likely closely related to the
warm and dense components seen in the near-infrared H2 transitions, and in
millimeter wave tracers of molecular gas. Any emission of the putative pc-scale
molecular torus is likely overwhelmed by this larger scale emission.Comment: aastex (V4), 9 eps figures. Accepted by Ap
Searching for galaxy clusters in the Kilo-Degree Survey
In this paper, we present the tools used to search for galaxy clusters in the
Kilo Degree Survey (KiDS), and our first results. The cluster detection is
based on an implementation of the optimal filtering technique that enables us
to identify clusters as over-densities in the distribution of galaxies using
their positions on the sky, magnitudes, and photometric redshifts. The
contamination and completeness of the cluster catalog are derived using mock
catalogs based on the data themselves. The optimal signal to noise threshold
for the cluster detection is obtained by randomizing the galaxy positions and
selecting the value that produces a contamination of less than 20%. Starting
from a subset of clusters detected with high significance at low redshifts, we
shift them to higher redshifts to estimate the completeness as a function of
redshift: the average completeness is ~ 85%. An estimate of the mass of the
clusters is derived using the richness as a proxy. We obtained 1858 candidate
clusters with redshift 0 < z_c < 0.7 and mass 13.5 < log(M500/Msun) < 15 in an
area of 114 sq. degrees (KiDS ESO-DR2). A comparison with publicly available
Sloan Digital Sky Survey (SDSS)-based cluster catalogs shows that we match more
than 50% of the clusters (77% in the case of the redMaPPer catalog). We also
cross-matched our cluster catalog with the Abell clusters, and clusters found
by XMM and in the Planck-SZ survey; however, only a small number of them lie
inside the KiDS area currently available.Comment: 13 pages, 15 figures. Accepted for publication on Astronomy &
Astrophysic
Detection of interstellar CH_3
Observations with the Short Wavelength Spectrometer (SWS) onboard the {\it
Infrared Space Observatory} (ISO) have led to the first detection of the methyl
radical in the interstellar medium. The branch at 16.5
m and the (0) line at 16.0 m have been unambiguously detected
toward the Galactic center SgrA. The analysis of the measured bands gives a
column density of (8.02.4) cm and an excitation
temperature of K. Gaseous at a similarly low excitation
temperature and are detected for the same line of sight. Using
constraints on the column density obtained from and
visual extinction, the inferred abundance is
. The chemically related
molecule is not detected, but the pure rotational lines of are seen
with the Long Wavelength Spectrometer (LWS). The absolute abundances and the
and ratios are inconsistent with published
pure gas-phase models of dense clouds. The data require a mix of diffuse and
translucent clouds with different densities and extinctions, and/or the
development of translucent models in which gas-grain chemistry, freeze-out and
reactions of with polycyclic aromatic hydrocarbons and solid
aliphatic material are included.Comment: 2 figures. ApJL, Accepte
The Benefits of Using XML Technologies in Astronomical Data Retrieval and Interpretation
This paper describes a solution found during recent research that could provide improvements in the efficiency, reliability and cost of retrieving stored astronomical data. This solution uses XML Technologies in showing that when querying a variety of astronomical data sources a standardised data structure can be output into an XML query results Document. This paper shows the astronomical XMLSchema that has been partially developed in conjunction with simple custom supporting system software. It also discusses briefly possible future implications
Metallicity Gradients in the Intracluster Gas of Abell 496
Analysis of spatially resolved ASCA spectra of the intracluster gas in Abell
496 confirms there are mild metal abundance enhancements near the center, as
previously found by White et al. (1994) in a joint analysis of Ginga LAC and
Einstein SSS spectra. Simultaneous analysis of spectra from all ASCA
instruments (SIS + GIS) shows that the iron abundance is 0.36 +- 0.03 solar
3-12' from the center of the cluster and rises ~50% to 0.53 +- 0.04 solar
within the central 2'. The F-test shows that this abundance gradient is
significant at the >99.99% level. Nickel and sulfur abundances are also
centrally enhanced. We use a variety of elemental abundance ratios to assess
the relative contribution of SN Ia and SN II to the metal enrichment of the
intracluster gas. We find spatial gradients in several abundance ratios,
indicating that the fraction of iron from SN Ia increases toward the cluster
center, with SN Ia accounting for ~50% of the iron mass 3-12' from the center
and ~70% within 2'. The increased proportion of SN Ia ejecta at the center is
such that the central iron abundance enhancement can be attributed wholly to SN
Ia; we find no significant gradient in SN II ejecta. These spatial gradients in
the proportion of SN Ia/II ejecta imply that the dominant metal enrichment
mechanism near the center is different than in the outer parts of the cluster.
We show that the central abundance enhancement is unlikely to be due to ram
pressure stripping of gas from cluster galaxies, or to secularly accumulated
stellar mass loss within the central cD. We suggest that the additional SN Ia
ejecta near the center is the vestige of a secondary SN Ia-driven wind from the
cD (following a more energetic protogalactic SN II-driven wind phase), which
was partially smothered in the cD due to its location at the cluster center.Comment: 25 pages AASTeX; 6 encapsulated PostScript figures; accepted for
publication in ApJ. Replaced with revised versio
A Spitzer Infrared Spectrograph Survey of Warm Molecular Hydrogen in Ultra-luminous Infrared Galaxies
We have conducted a survey of Ultra-luminous Infrared Galaxies (ULIRGs) with
the Infrared Spectrograph on the Spitzer Space Telescope, obtaining spectra
from 5.0-38.5um for 77 sources with 0.02<z <0.93. Observations of the pure
rotational H2 lines S(3) 9.67um, S(2) 12.28um, and S(1) 17.04um are used to
derive the temperature and mass of the warm molecular gas. We detect H2 in 77%
of the sample, and all ULIRGs with F(60um)>2Jy. The average warm molecular gas
mass is ~2x10^8solar-masses. High extinction, inferred from the 9.7um silicate
absorption depth, is not observed along the line of site to the molecular gas.
The derived H2 mass does not depend on F(25um)/F(60um), which has been used to
infer either starburst or AGN dominance. Similarly, the molecular mass does not
scale with the 25 or 60um luminosities. In general, the H2 emission is
consistent with an origin in photo-dissociation regions associated with star
formation. We detect the S(0) 28.22um emission line in a few ULIRGs. Including
this line in the model fits tends to lower the temperature by ~50-100K,
resulting in a significant increase in the gas mass. The presence of a cooler
component cannot be ruled out in the remainder of our sample, for which we do
not detect the S(0) line. The measured S(7) 5.51um line fluxes in six ULIRGs
implies ~3x10^6 solar-masses of hot (~1400K) H2. The warm gas mass is typically
less than 1% of the cold gas mass derived from CO observations.Comment: Accepted ApJ 01 September 2006, v648n1 issue. 14 pages 12 figures
IRAS 06361-6217 the f25/f60 ratio is 0.10 not 1.0
- …
