8 research outputs found

    Lysine-Specific Demethylase 1 (LSD1) epigenetically controls osteoblast differentiation

    Get PDF
    Epigenetic mechanisms regulate osteogenic lineage differentiation of mesenchymal stromal cells. Histone methylation is controlled by multiple lysine demethylases and is an important step in controlling local chromatin structure and gene expression. Here, we show that the lysine-specific histone demethylase Kdm1A/Lsd1 is abundantly expressed in osteoblasts and that its suppression impairs osteoblast differentiation and bone nodule formation in vitro. Although Lsd1 knockdown did not affect global H3K4 methylation levels, genome-wide ChIP-Seq analysis revealed high levels of Lsd1 at gene promoters and its binding was associated with di- and tri-methylation of histone 3 at lysine 4 (H3K4me2 and H3K4me3). Lsd1 binding sites in osteoblastic cells were enriched for the Runx2 consensus motif suggesting a functional link between the two proteins. Importantly, inhibition of Lsd1 activity decreased osteoblast activity in vivo. In support, mesenchymal-targeted knockdown of Lsd1 led to decreased osteoblast activity and disrupted primary spongiosa ossification and reorganization in vivo. Together, our studies demonstrate that Lsd1 occupies Runx2-binding cites at H3K4me2 and H3K4me3 and its activity is required for proper bone formation.</p

    An Activating STAT3 Mutation Causes Neonatal Diabetes through Premature Induction of Pancreatic Differentiation

    Get PDF
    Activating germline mutations in STAT3 were recently identified as a cause of neonatal diabetes mellitus associated with beta-cell autoimmunity. We have investigated the effect of an activating mutation, STAT3(K392R,) on pancreatic development using induced pluripotent stem cells (iPSCs) derived from a patient with neonatal diabetes and pancreatic hypoplasia. Early pancreatic endoderm differentiated similarly from STAT3(K392R) and healthy-control cells, but in later stages, NEUROG3 expressionwas upregulated prematurely in STAT3(K392R) cells together with insulin (INS) and glucagon (GCG). RNA sequencing (RNA-seq) showed robust NEUROG3 downstream targets upregulation. STAT3 mutation correction with CRISPR/Cas9 reversed completely the disease phenotype. STAT3(K392R) -activating properties were not explained fully by altered DNA-binding affinity or increased phosphorylation. Instead, reporter assays demonstrated NEUROG3 promoter activation by STAT3 in pancreatic cells. Furthermore, proteomic and immunocytochemical analyses revealed increased nuclear translocation of STAT3(K392R). Collectively, our results demonstrate that the STAT3(K392R) mutation causes premature endocrine differentiation through direct induction of NEUROG3 expression.Peer reviewe

    Genetic Variability Overrides the Impact of Parental Cell Type and Determines iPSC Differentiation Potential

    Get PDF
    Reports on the retention of somatic cell memory in induced pluripotent stem cells (iPSCs) have complicated the selection of the optimal cell type for the generation of iPSC biobanks. To address this issue we compared transcriptomic, epigenetic, and differentiation propensities of genetically matched human iPSCs derived from fibroblasts and blood, two tissues of the most practical relevance for biobanking. Our results show that iPSC lines derived from the same donor are highly similar to each other. However, genetic variation imparts a donor-specific expression and methylation profile in reprogrammed cells that leads to variable functional capacities of iPSC lines. Our results suggest that integration-free, bona fide iPSC lines from fibroblasts and blood can be combined in repositories to form biobanks. Due to the impact of genetic variation on iPSC differentiation, biobanks should contain cells from large numbers of donors.Peer reviewe

    Additional file 1: of cChIP-seq: a robust small-scale method for investigation of histone modifications

    No full text
    The following additional data are available with the online version of this paper. Additional data file 1 contains the following figures. Figure S1. illustrates the optimization on sonication down to 30,000 crosslinked cells using the Covaris LE220 ultrasonicator. Figure S2. provides p-values for the Pearson’s correlation heatmaps shown in Figs. 2, 3 and 4. Figure S3. relates to Fig. 2 and provides additional results for H3K4me3 in K562 cell line. Figure S4. relates to Fig. 3 and provides additional results for H3K4me1 in K562 cell line. Figure S5. shows results obtained for H3K4me1 in H1 hESC line. (PDF 3493 kb

    The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition

    No full text
    For nearly a century developmental biologists have recognized that cells from embryos can differ in their potential to differentiate into distinct cell types. Recently, it has been recognized that embryonic stem cells derived from both mice and humans exhibit two stable yet epigenetically distinct states of pluripotency: naive and primed. We now show that nicotinamide N-methyltransferase (NNMT) and the metabolic state regulate pluripotency in human embryonic stem cells (hESCs).  Specifically, in naive hESCs, NNMT and its enzymatic product 1-methylnicotinamide are highly upregulated, and NNMT is required for low S-adenosyl methionine (SAM) levels and the H3K27me3 repressive state. NNMT consumes SAM in naive cells, making it unavailable for histone methylation that represses Wnt and activates the HIF pathway in primed hESCs. These data support the hypothesis that the metabolome regulates the epigenetic landscape of the earliest steps in human development
    corecore