34 research outputs found

    Las antologías

    Get PDF
    PublishedQuien lee escucha muchas voces. Escucha la voz de aquel que escribe al amor, al niño, a la mujer, al hombre en general. Escucha al científico, al historiador, al poeta; a todo aquel que ha querido dejar huella a tra-vés de la palabra escrita. Hay quienes con sus textos dejaron marcas profundas en la conciencia del lector. Algunos bellos y estéticos fragmentos de variedad de escritos y escritores han logrado que el lector vivencie en su mente momen-tos que posiblemente no se pudieran experimentar de otra manera. Aquellos instantes pletóricos de emociones unos, de sueños y angustias otros; de asom-bro, miedo y congoja no pocos, han facilitado, de igual manera, que ese código expresado por medio de la palabra escrute la realidad del entorno y de la vida

    Dynamic Models Supporting Personalised Chronic Disease Management through Healthcare Sensors with Interactive Process Mining

    Full text link
    [EN] Rich streams of continuous data are available through Smart Sensors representing a unique opportunity to develop and analyse risk models in healthcare and extract knowledge from data. There is a niche for developing new algorithms, and visualisation and decision support tools to assist health professionals in chronic disease management incorporating data generated through smart sensors in a more precise and personalised manner. However, current understanding of risk models relies on static snapshots of health variables or measures, rather than ongoing and dynamic feedback loops of behaviour, considering changes and different states of patients and diseases. The rationale of this work is to introduce a new method for discovering dynamic risk models for chronic diseases, based on patients¿ dynamic behaviour provided by health sensors, using Process Mining techniques. Results show the viability of this method, three dynamic models have been discovered for the chronic diseases hypertension, obesity, and diabetes, based on the dynamic behaviour of metabolic risk factors associated. This information would support health professionals to translate a one-fits-all current approach to treatments and care, to a personalised medicine strategy, that fits treatments built on patients¿ unique behaviour thanks to dynamic risk modelling taking advantage of the amount data generated by smart sensors.This research was partially funded by the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement no. 727560.Valero Ramon, Z.; Fernández Llatas, C.; Valdivieso, B.; Traver Salcedo, V. (2020). Dynamic Models Supporting Personalised Chronic Disease Management through Healthcare Sensors with Interactive Process Mining. Sensors. 20(18):1-25. https://doi.org/10.3390/s20185330S1252018Chen, M., Mao, S., & Liu, Y. (2014). Big Data: A Survey. Mobile Networks and Applications, 19(2), 171-209. doi:10.1007/s11036-013-0489-0Brennan, P., Perola, M., van Ommen, G.-J., & Riboli, E. (2017). Chronic disease research in Europe and the need for integrated population cohorts. European Journal of Epidemiology, 32(9), 741-749. doi:10.1007/s10654-017-0315-2Raghupathi, W., & Raghupathi, V. (2018). An Empirical Study of Chronic Diseases in the United States: A Visual Analytics Approach to Public Health. International Journal of Environmental Research and Public Health, 15(3), 431. doi:10.3390/ijerph15030431Forouzanfar, M. H., Afshin, A., Alexander, L. T., Anderson, H. R., Bhutta, Z. A., Biryukov, S., … Charlson, F. J. (2016). Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388(10053), 1659-1724. doi:10.1016/s0140-6736(16)31679-8Gómez, J., Oviedo, B., & Zhuma, E. (2016). Patient Monitoring System Based on Internet of Things. Procedia Computer Science, 83, 90-97. doi:10.1016/j.procs.2016.04.103Harvey, A., Brand, A., Holgate, S. T., Kristiansen, L. V., Lehrach, H., Palotie, A., & Prainsack, B. (2012). The future of technologies for personalised medicine. New Biotechnology, 29(6), 625-633. doi:10.1016/j.nbt.2012.03.009Larry Jameson, J., & Longo, D. L. (2015). Precision Medicine—Personalized, Problematic, and Promising. Obstetrical & Gynecological Survey, 70(10), 612-614. doi:10.1097/01.ogx.0000472121.21647.38Collins, F. S., & Varmus, H. (2015). A New Initiative on Precision Medicine. New England Journal of Medicine, 372(9), 793-795. doi:10.1056/nejmp1500523Glasgow, R. E., Kwan, B. M., & Matlock, D. D. (2018). Realizing the full potential of precision health: The need to include patient-reported health behavior, mental health, social determinants, and patient preferences data. Journal of Clinical and Translational Science, 2(3), 183-185. doi:10.1017/cts.2018.31Whittemore, A. S. (2010). Evaluating health risk models. Statistics in Medicine, 29(23), 2438-2452. doi:10.1002/sim.3991Reynolds, B. C., Roem, J. L., Ng, D. K. S., Matsuda-Abedini, M., Flynn, J. T., Furth, S. L., … Parekh, R. S. (2020). Association of Time-Varying Blood Pressure With Chronic Kidney Disease Progression in Children. JAMA Network Open, 3(2), e1921213. doi:10.1001/jamanetworkopen.2019.21213Campbell, H., Hotchkiss, R., Bradshaw, N., & Porteous, M. (1998). Integrated care pathways. BMJ, 316(7125), 133-137. doi:10.1136/bmj.316.7125.133Schienkiewitz, A., Mensink, G. B. M., & Scheidt-Nave, C. (2012). Comorbidity of overweight and obesity in a nationally representative sample of German adults aged 18-79 years. BMC Public Health, 12(1). doi:10.1186/1471-2458-12-658Must, A. (1999). The Disease Burden Associated With Overweight and Obesity. JAMA, 282(16), 1523. doi:10.1001/jama.282.16.1523Audureau, E., Pouchot, J., & Coste, J. (2016). Gender-Related Differential Effects of Obesity on Health-Related Quality of Life via Obesity-Related Comorbidities. Circulation: Cardiovascular Quality and Outcomes, 9(3), 246-256. doi:10.1161/circoutcomes.115.002127Everhart, J. E., Pettitt, D. J., Bennett, P. H., & Knowler, W. C. (1992). Duration of Obesity Increases the Incidence of NIDDM. Diabetes, 41(2), 235-240. doi:10.2337/diab.41.2.235Wannamethee, S. G. (2005). Overweight and obesity and weight change in middle aged men: impact on cardiovascular disease and diabetes. Journal of Epidemiology & Community Health, 59(2), 134-139. doi:10.1136/jech.2003.015651Ziegelstein, R. C. (2018). Perspectives in Primary Care: Knowing the Patient as a Person in the Precision Medicine Era. The Annals of Family Medicine, 16(1), 4-5. doi:10.1370/afm.2169Tricoli, A., Nasiri, N., & De, S. (2017). Wearable and Miniaturized Sensor Technologies for Personalized and Preventive Medicine. Advanced Functional Materials, 27(15), 1605271. doi:10.1002/adfm.201605271Saponara, S., Donati, M., Fanucci, L., & Celli, A. (2016). An Embedded Sensing and Communication Platform, and a Healthcare Model for Remote Monitoring of Chronic Diseases. Electronics, 5(4), 47. doi:10.3390/electronics5030047Alvarez, C., Rojas, E., Arias, M., Munoz-Gama, J., Sepúlveda, M., Herskovic, V., & Capurro, D. (2018). Discovering role interaction models in the Emergency Room using Process Mining. Journal of Biomedical Informatics, 78, 60-77. doi:10.1016/j.jbi.2017.12.015Fernández-Llatas, C., Benedi, J.-M., García-Gómez, J., & Traver, V. (2013). Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes. Sensors, 13(11), 15434-15451. doi:10.3390/s131115434Shahar, Y. (1997). A framework for knowledge-based temporal abstraction. Artificial Intelligence, 90(1-2), 79-133. doi:10.1016/s0004-3702(96)00025-2Orphanou, K., Stassopoulou, A., & Keravnou, E. (2016). DBN-Extended: A Dynamic Bayesian Network Model Extended With Temporal Abstractions for Coronary Heart Disease Prognosis. IEEE Journal of Biomedical and Health Informatics, 20(3), 944-952. doi:10.1109/jbhi.2015.2420534Spruijt-Metz, D., Hekler, E., Saranummi, N., Intille, S., Korhonen, I., Nilsen, W., … Pavel, M. (2015). Building new computational models to support health behavior change and maintenance: new opportunities in behavioral research. Translational Behavioral Medicine, 5(3), 335-346. doi:10.1007/s13142-015-0324-1Rojas, E., Munoz-Gama, J., Sepúlveda, M., & Capurro, D. (2016). Process mining in healthcare: A literature review. Journal of Biomedical Informatics, 61, 224-236. doi:10.1016/j.jbi.2016.04.007Yoo, S., Cho, M., Kim, E., Kim, S., Sim, Y., Yoo, D., … Song, M. (2016). Assessment of hospital processes using a process mining technique: Outpatient process analysis at a tertiary hospital. International Journal of Medical Informatics, 88, 34-43. doi:10.1016/j.ijmedinf.2015.12.018Ibanez-Sanchez, G., Fernandez-Llatas, C., Martinez-Millana, A., Celda, A., Mandingorra, J., Aparici-Tortajada, L., … Traver, V. (2019). Toward Value-Based Healthcare through Interactive Process Mining in Emergency Rooms: The Stroke Case. International Journal of Environmental Research and Public Health, 16(10), 1783. doi:10.3390/ijerph16101783Chambers, D. A., Feero, W. G., & Khoury, M. J. (2016). Convergence of Implementation Science, Precision Medicine, and the Learning Health Care System. JAMA, 315(18), 1941. doi:10.1001/jama.2016.3867Cameranesi, M., Diamantini, C., Mircoli, A., Potena, D., & Storti, E. (2020). Extraction of User Daily Behavior From Home Sensors Through Process Discovery. IEEE Internet of Things Journal, 7(9), 8440-8450. doi:10.1109/jiot.2020.2990537Fernández-Llatas, C., Meneu, T., Traver, V., & Benedi, J.-M. (2013). Applying Evidence-Based Medicine in Telehealth: An Interactive Pattern Recognition Approximation. International Journal of Environmental Research and Public Health, 10(11), 5671-5682. doi:10.3390/ijerph10115671Conca, T., Saint-Pierre, C., Herskovic, V., Sepúlveda, M., Capurro, D., Prieto, F., & Fernandez-Llatas, C. (2018). Multidisciplinary Collaboration in the Treatment of Patients With Type 2 Diabetes in Primary Care: Analysis Using Process Mining. Journal of Medical Internet Research, 20(4), e127. doi:10.2196/jmir.8884Makaroff, L. E. (2017). The need for international consensus on prediabetes. The Lancet Diabetes & Endocrinology, 5(1), 5-7. doi:10.1016/s2213-8587(16)30328-xShiue, I., McMeekin, P., & Price, C. (2017). Retrospective observational study of emergency admission, readmission and the ‘weekend effect’. BMJ Open, 7(3), e012493. doi:10.1136/bmjopen-2016-01249

    Machine learning model from a Spanish cohort for prediction of SARS-COV-2 mortality risk and critical patients

    Get PDF
    Patients affected by SARS-COV-2 have collapsed healthcare systems around the world. Consequently, different challenges arise regarding the prediction of hospital needs, optimization of resources, diagnostic triage tools and patient evolution, as well as tools that allow us to analyze which are the factors that determine the severity of patients. Currently, it is widely accepted that one of the problems since the pandemic appeared was to detect (i) who patients were about to need Intensive Care Unit (ICU) and (ii) who ones were about not overcome the disease. These critical patients collapsed Hospitals to the point that many surgeries around the world had to be cancelled. Therefore, the aim of this paper is to provide a Machine Learning (ML) model that helps us to prevent when a patient is about to be critical. Although we are in the era of data, regarding the SARS-COV-2 patients, there are currently few tools and solutions that help medical professionals to predict the evolution of patients in order to improve their treatment and the needs of critical resources at hospitals. Moreover, most of these tools have been created from small populations and/or Chinese populations, which carries a high risk of bias. In this paper, we present a model, based on ML techniques, based on 5378 Spanish patients’ data from which a quality cohort of 1201 was extracted to train the model. Our model is capable of predicting the probability of death of patients with SARS-COV-2 based on age, sex and comorbidities of the patient. It also allows what-if analysis, with the inclusion of comorbidities that the patient may develop during the SARS-COV-2 infection. For the training of the model, we have followed an agnostic approach. We explored all the active comorbidities during the SARS-COV-2 infection of the patients with the objective that the model weights the effect of each comorbidity on the patient’s evolution according to the data available. The model has been validated by using stratified cross-validation with k = 5 to prevent class imbalance. We obtained robust results, presenting a high hit rate, with 84.16% accuracy, 83.33% sensitivity, and an Area Under the Curve (AUC) of 0.871. The main advantage of our model, in addition to its high success rate, is that it can be used with medical records in order to predict their diagnosis, allowing the critical population to be identified in advance. Furthermore, it uses the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD 9-CM) standard. In this sense, we should also emphasize that those hospitals using other encodings can add an intermediate layer business to business (B2B) with the aim of making transformations to the same international format.This paper has been partially funded by the AETHER-UA (PID2020-112540RB-C43) project by the Ministry of Science and Innovation, the BALLADEER (PROMETEO/2021/088) project by the Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital. Both Jose M. Barrera (I-PI 98/18) and Alejandro Reina (I-PI 13/20) hold an Industrial PhD Grants co-funded by the University of Alicante and the Lucentia Lab Spin-off Company

    Temporal variability analysis reveals biases in electronic health records due to hospital process reengineering interventions over seven years

    Full text link
    [EN] Objective To evaluate the effects of Process-Reengineering interventions on the Electronic Health Records (EHR) of a hospital over 7 years. Materials and methods Temporal Variability Assessment (TVA) based on probabilistic data quality assessment was applied to the historic monthly-batched admission data of Hospital La Fe Valencia, Spain from 2010 to 2016. Routine healthcare data with a complete EHR was expanded by processed variables such as the Charlson Comorbidity Index. Results Four Process-Reengineering interventions were detected by quantifiable effects on the EHR: (1) the hospital relocation in 2011 involved progressive reduction of admissions during the next four months, (2) the hospital services re-configuration incremented the number of inter-services transfers, (3) the care-services re-distribution led to transfers between facilities (4) the assignment to the hospital of a new area with 80,000 patients in 2015 inspired the discharge to home for follow up and the update of the pre-surgery planned admissions protocol that produced a significant decrease of the patient length of stay. Discussion TVA provides an indicator of the effect of process re-engineering interventions on healthcare practice. Evaluating the effect of facilities¿ relocation and increment of citizens (findings 1, 3¿4), the impact of strategies (findings 2¿3), and gradual changes in protocols (finding 4) may help on the hospital management by optimizing interventions based on their effect on EHRs or on data reuse. Conclusions The effects on hospitals EHR due to process re-engineering interventions can be evaluated using the TVA methodology. Being aware of conditioned variations in EHR is of the utmost importance for the reliable reuse of routine hospitalization data.F.J.P.B, C.S., J.M.G.G. and J.A.C. were funded Universitat Politecnica de Valencia, project "ANALISIS DE LA CALIDAD Y VARIABILIDAD DE DATOS MEDICOS". www.upv.es. J.M.G.G.is also partially supported by: Ministerio de Economia y Competitividad of Spain through MTS4up project (National Plan for Scientific and Technical Research and Innovation 2013-2016, No. DPI2016-80054-R); and European Commission projects H2020-SC1-2016-CNECT Project (No. 727560) and H2020-SC1-BHC-2018-2020 (No. 825750). The funders did not play any role in the study design, data collection and analysis, decision to publish, nor preparation of the manuscript.Perez-Benito, FJ.; Sáez Silvestre, C.; Conejero, JA.; Tortajada, S.; Valdivieso, B.; Garcia-Gomez, JM. (2019). Temporal variability analysis reveals biases in electronic health records due to hospital process reengineering interventions over seven years. PLoS ONE. 14(8):1-19. https://doi.org/10.1371/journal.pone.0220369S119148Aguilar-Savén, R. S. (2004). Business process modelling: Review and framework. International Journal of Production Economics, 90(2), 129-149. doi:10.1016/s0925-5273(03)00102-6Poulymenopoulou, M. (2003). Journal of Medical Systems, 27(4), 325-335. doi:10.1023/a:1023701219563Dadam P, Reichert M, Kuhn K. Clinical Workflows -The Killer Application for Process-oriented Information Systems? Proceedings of the 4th International Conference on Business Information Systems. London: Springer London; 2000. pp. 36–59. doi: https://doi.org/10.1007/978-1-4471-0761-3Lenz, R., & Reichert, M. (2007). IT support for healthcare processes – premises, challenges, perspectives. Data & Knowledge Engineering, 61(1), 39-58. doi:10.1016/j.datak.2006.04.007Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information Systems, 37(2), 99-116. doi:10.1016/j.is.2011.01.003Amour EAEH, Ghannouchi SA. Applying Data Mining Techniques to Discover KPIs Relationships in Business Process Context. 2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT). IEEE; 2017. pp. 230–237. doi: https://doi.org/10.1109/PDCAT.2017.00045Chou, Y.-C., Chen, B.-Y., Tang, Y.-Y., Qiu, Z.-J., Wu, M.-F., Wang, S.-C., … Chuang, W.-C. (2010). Prescription-Filling Process Reengineering of an Outpatient Pharmacy. Journal of Medical Systems, 36(2), 893-902. doi:10.1007/s10916-010-9553-5Leu, J.-D., & Huang, Y.-T. (2009). An Application of Business Process Method to the Clinical Efficiency of Hospital. Journal of Medical Systems, 35(3), 409-421. doi:10.1007/s10916-009-9376-4Gand K. Investigating on Requirements for Business Model Representations: The Case of Information Technology in Healthcare. 2017 IEEE 19th Conference on Business Informatics (CBI). IEEE; 2017. pp. 471–480. doi: https://doi.org/10.1109/CBI.2017.36Ferreira, G. S. A., Silva, U. R., Costa, A. L., & Pádua, S. I. D. de D. (2018). The promotion of BPM and lean in the health sector: main results. Business Process Management Journal, 24(2), 400-424. doi:10.1108/bpmj-06-2016-0115Abdulrahman Jabour RM. Cancer Reporting: Timeliness Analysis and Process. 2016; Available: https://search.proquest.com/openview/4ecf737c5ef6d2d503e948df8031fe54/1?pq-origsite=gscholar&cbl=18750&diss=yHewitt M, Simone J V. Enhancing Data Systems to Improve the Quality of Cancer Care [Internet]. National Academy Press; 2000. Available: http://www.nap.edu/catalog/9970.htmlWeiskopf, N. G., & Weng, C. (2013). Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research. Journal of the American Medical Informatics Association, 20(1), 144-151. doi:10.1136/amiajnl-2011-000681Saez C, Robles M, Garcia-Gomez JM. Comparative study of probability distribution distances to define a metric for the stability of multi-source biomedical research data. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. IEEE; 2013. pp. 3226–3229. doi: https://doi.org/10.1109/EMBC.2013.6610228Sáez, C., Rodrigues, P. P., Gama, J., Robles, M., & García-Gómez, J. M. (2014). Probabilistic change detection and visualization methods for the assessment of temporal stability in biomedical data quality. Data Mining and Knowledge Discovery, 29(4), 950-975. doi:10.1007/s10618-014-0378-6Sáez, C., Zurriaga, O., Pérez-Panadés, J., Melchor, I., Robles, M., & García-Gómez, J. M. (2016). Applying probabilistic temporal and multisite data quality control methods to a public health mortality registry in Spain: a systematic approach to quality control of repositories. Journal of the American Medical Informatics Association, 23(6), 1085-1095. doi:10.1093/jamia/ocw010International Ethical Guidelines for Epidemiological Studies [Internet]. Geneva: Council for International Organizations of Medical Sciences (CIOMS) in collaboration with the World Health Organization; 2009. Available: https://cioms.ch/wp-content/uploads/2017/01/International_Ethical_Guidelines_LR.pdfResearch Ethics Committee of the Universitari i Politècnic La Fe Hospital [Internet]. Available: https://www.iislafe.es/en/research/ethics-committees/Charlson, M. E., Pompei, P., Ales, K. L., & MacKenzie, C. R. (1987). A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. Journal of Chronic Diseases, 40(5), 373-383. doi:10.1016/0021-9681(87)90171-8Schneeweiss, S., Wang, P. S., Avorn, J., & Glynn, R. J. (2003). Improved Comorbidity Adjustment for Predicting Mortality in Medicare Populations. Health Services Research, 38(4), 1103-1120. doi:10.1111/1475-6773.00165Quan, H., Sundararajan, V., Halfon, P., Fong, A., Burnand, B., Luthi, J.-C., … Ghali, W. A. (2005). Coding Algorithms for Defining Comorbidities in ICD-9-CM and ICD-10 Administrative Data. Medical Care, 43(11), 1130-1139. doi:10.1097/01.mlr.0000182534.19832.83Sáez Silvestre C. Probabilistic methods for multi-source and temporal biomedical data quality assessment [Internet]. Thesis. Universitat Politècnica de València. 2016. doi: https://doi.org/10.4995/Thesis/10251/62188Amari S, Nagaoka H. Methods of Information Geometry [Internet]. Amer. Math. Soc. and Oxford Univ. Press. American Mathematical Society; 2000. Available: https://books.google.es/books?hl=es&lr=&id=vc2FWSo7wLUC&oi=fnd&pg=PR7&dq=Methods+of+Information+geometry&ots=4HmyCCY4PX&sig=2-dpCuwMQvEC1iREjxdfIX0yEls#v=onepage&q=MethodsofInformationgeometry&f=falseCsiszár, I., & Shields, P. C. (2004). Information Theory and Statistics: A Tutorial. Foundations and Trends™ in Communications and Information Theory, 1(4), 417-528. doi:10.1561/0100000004Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Transactions on Information Theory, 37(1), 145-151. doi:10.1109/18.61115M.Cover T. Elements Of Information Theory Notes [Internet]. 2006. Available: http://books.google.fr/books?id=VWq5GG6ycxMC&printsec=frontcover&dq=intitle:Elements+of+Information+Theory&hl=&cd=1&source=gbs_api%5Cnpapers2://publication/uuid/BAF426F8-5A4F-44A4-8333-FA8187160D9BBrandes, U., & Pich, C. (s. f.). Eigensolver Methods for Progressive Multidimensional Scaling of Large Data. Lecture Notes in Computer Science, 42-53. doi:10.1007/978-3-540-70904-6_6Liaw, S. T., Rahimi, A., Ray, P., Taggart, J., Dennis, S., de Lusignan, S., … Talaei-Khoei, A. (2013). Towards an ontology for data quality in integrated chronic disease management: A realist review of the literature. International Journal of Medical Informatics, 82(1), 10-24. doi:10.1016/j.ijmedinf.2012.10.001Arts, D. G. T. (2002). Defining and Improving Data Quality in Medical Registries: A Literature Review, Case Study, and Generic Framework. Journal of the American Medical Informatics Association, 9(6), 600-611. doi:10.1197/jamia.m1087Bray, F., & Parkin, D. M. (2009). Evaluation of data quality in the cancer registry: Principles and methods. Part I: Comparability, validity and timeliness. European Journal of Cancer, 45(5), 747-755. doi:10.1016/j.ejca.2008.11.032Parkin, D. M., & Bray, F. (2009). Evaluation of data quality in the cancer registry: Principles and methods Part II. Completeness. European Journal of Cancer, 45(5), 756-764. doi:10.1016/j.ejca.2008.11.033Fernandez-Llatas, C., Ibanez-Sanchez, G., Celda, A., Mandingorra, J., Aparici-Tortajada, L., Martinez-Millana, A., … Traver, V. (2019). Analyzing Medical Emergency Processes with Process Mining: The Stroke Case. Lecture Notes in Business Information Processing, 214-225. doi:10.1007/978-3-030-11641-5_17Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769Van der Aalst, W., Weijters, T., & Maruster, L. (2004). Workflow mining: discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering, 16(9), 1128-1142. doi:10.1109/tkde.2004.47Weijters AJMM, Van Der Aalst WMP, Alves De Medeiros AK. Process Mining with the HeuristicsMiner Algorithm [Internet]. Available: https://pdfs.semanticscholar.org/1cc3/d62e27365b8d7ed6ce93b41c193d0559d086.pdfShim, S. J., & Kumar, A. (2010). Simulation for emergency care process reengineering in hospitals. Business Process Management Journal, 16(5), 795-805. doi:10.1108/14637151011076476Svolba, G., & Bauer, P. (1999). Statistical Quality Control in Clinical Trials. Controlled Clinical Trials, 20(6), 519-530. doi:10.1016/s0197-2456(99)00029-xKahn, M. G., Raebel, M. A., Glanz, J. M., Riedlinger, K., & Steiner, J. F. (2012). A Pragmatic Framework for Single-site and Multisite Data Quality Assessment in Electronic Health Record-based Clinical Research. Medical Care, 50, S21-S29. doi:10.1097/mlr.0b013e318257dd67Batini, C., Cappiello, C., Francalanci, C., & Maurino, A. (2009). Methodologies for data quality assessment and improvement. ACM Computing Surveys, 41(3), 1-52. doi:10.1145/1541880.1541883Heinrich, B., Klier, M., & Kaiser, M. (2009). A Procedure to Develop Metrics for Currency and its Application in CRM. Journal of Data and Information Quality, 1(1), 1-28. doi:10.1145/1515693.1515697Sirgo, G., Esteban, F., Gómez, J., Moreno, G., Rodríguez, A., Blanch, L., … Bodí, M. (2018). Validation of the ICU-DaMa tool for automatically extracting variables for minimum dataset and quality indicators: The importance of data quality assessment. International Journal of Medical Informatics, 112, 166-172. doi:10.1016/j.ijmedinf.2018.02.007Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the Dimensionality of Data with Neural Networks. Science, 313(5786), 504-507. doi:10.1126/science.1127647Kohn LT, Corrigan JM. To err is human: building a safer health system. A report of the Committee on Quality of Health Care in America. 2000. p. 287. National Academies Press

    Predicting morbidity by local similarities in multi-scale patient trajectories

    Full text link
    [EN] Patient Trajectories (PTs) are a method of representing the temporal evolution of patients. They can include information from different sources and be used in socio-medical or clinical domains. PTs have generally been used to generate and study the most common trajectories in, for instance, the development of a disease. On the other hand, healthcare predictive models generally rely on static snapshots of patient information. Only a few works about prediction in healthcare have been found that use PTs, and therefore benefit from their temporal dimension. All of them, however, have used PTs created from single-source information. Therefore, the use of longitudinal multi-scale data to build PTs and use them to obtain predictions about health conditions is yet to be explored. Our hypothesis is that local similarities on small chunks of PTs can identify similar patients concerning their future morbidities. The objectives of this work are (1) to develop a methodology to identify local similarities between PTs before the occurrence of morbidities to predict these on new query individuals; and (2) to validate this methodology on risk prediction of cardiovascular diseases (CVD) occurrence in patients with diabetes. We have proposed a novel formal definition of PTs based on sequences of longitudinal multi-scale data. Moreover, a dynamic programming methodology to identify local alignments on PTs for predicting future morbidities is proposed. Both the proposed methodology for PT definition and the alignment algorithm are generic to be applied on any clinical domain. We validated this solution for predicting CVD in patients with diabetes and we achieved a precision of 0.33, a recall of 0.72 and a specificity of 0.38. Therefore, the proposed solution in the diabetes use case can result of utmost utility to secondary screening.This work was supported by the CrowdHealth project (COLLECTIVE WISDOM DRIVING PUBLIC HEALTH POLICIES (727560)) and the MTS4up project (DPI2016-80054-R).Carrasco-Ribelles, LA.; Pardo-Más, JR.; Tortajada, S.; Sáez Silvestre, C.; Valdivieso, B.; Garcia-Gomez, JM. (2021). Predicting morbidity by local similarities in multi-scale patient trajectories. Journal of Biomedical Informatics. 120:1-9. https://doi.org/10.1016/j.jbi.2021.103837S1912

    Joyero engastador

    Get PDF
    Se presenta el diseño didáctico de la especialidad en joyería así como los bloques modulares, módulos instruccionales, objetivos, requisitos, operaciones y contenidos.The didactic design of the specialty in jewelry is presented as well as the modular blocks, instructional modules, objectives, requirements, operations and contents.Armado por moldeo -- Cadenerìa manual -- Engaste al grano -- Proceso de la cera perdida -- Armado especial -- Gestion empresarialna182 página

    Artificial Intelligence for Hospital Health Care:Application Cases and Answers to Challenges in European Hospitals

    Get PDF
    The development and implementation of artificial intelligence (AI) applications in health care contexts is a concurrent research and management question. Especially for hospitals, the expectations regarding improved efficiency and effectiveness by the introduction of novel AI applications are huge. However, experiences with real-life AI use cases are still scarce. As a first step towards structuring and comparing such experiences, this paper is presenting a comparative approach from nine European hospitals and eleven different use cases with possible application areas and benefits of hospital AI technologies. This is structured as a current review and opinion article from a diverse range of researchers and health care professionals. This contributes to important improvement options also for pandemic crises challenges, e.g., the current COVID-19 situation. The expected advantages as well as challenges regarding data protection, privacy, or human acceptance are reported. Altogether, the diversity of application cases is a core characteristic of AI applications in hospitals, and this requires a specific approach for successful implementation in the health care sector. This can include specialized solutions for hospitals regarding human-computer interaction, data management, and communication in AI implementation projects

    Lectura, escritura y pedagogía

    Get PDF
    Published“Lectura, escritura y pedagogía” es un libro dedicado a seres humanos capaces de aprender del gesto, del silencio, de las voces más agudas sin anular las graves; es un compendio que corre como agua sobre la piel de sus lectores, se interna y los transforma porque es una producción que se ha esculpido con las continuas conversaciones, impaciencias, ausencias y manifestaciones de inconformidad frente a un territorio denominado “calidad educativa”, donde nos movemos como compañeros del Área de Lenguaje de la Universidad Santiago de Cal
    corecore