8,786 research outputs found

    Failure-recovery model with competition between failures in complex networks: a dynamical approach

    Full text link
    Real systems are usually composed by units or nodes whose activity can be interrupted and restored intermittently due to complex interactions not only with the environment, but also with the same system. Majdand\v{z}i\'c et  al.et\;al. [Nature Physics 10, 34 (2014)] proposed a model to study systems in which active nodes fail and recover spontaneously in a complex network and found that in the steady state the density of active nodes can exhibit an abrupt transition and hysteresis depending on the values of the parameters. Here we investigate a model of recovery-failure from a dynamical point of view. Using an effective degree approach we find that the systems can exhibit a temporal sharp decrease in the fraction of active nodes. Moreover we show that, depending on the values of the parameters, the fraction of active nodes has an oscillatory regime which we explain as a competition between different failure processes. We also find that in the non-oscillatory regime, the critical fraction of active nodes presents a discontinuous drop which can be related to a "targeted" k-core percolation process. Finally, using mean field equations we analyze the space of parameters at which hysteresis and oscillatory regimes can be found

    Social distancing strategies against disease spreading

    Get PDF
    The recurrent infectious diseases and their increasing impact on the society has promoted the study of strategies to slow down the epidemic spreading. In this review we outline the applications of percolation theory to describe strategies against epidemic spreading on complex networks. We give a general outlook of the relation between link percolation and the susceptible-infected-recovered model, and introduce the node void percolation process to describe the dilution of the network composed by healthy individual, i.ei.e, the network that sustain the functionality of a society. Then, we survey two strategies: the quenched disorder strategy where an heterogeneous distribution of contact intensities is induced in society, and the intermittent social distancing strategy where health individuals are persuaded to avoid contact with their neighbors for intermittent periods of time. Using percolation tools, we show that both strategies may halt the epidemic spreading. Finally, we discuss the role of the transmissibility, i.ei.e, the effective probability to transmit a disease, on the performance of the strategies to slow down the epidemic spreading.Comment: to be published in "Perspectives and Challenges in Statistical Physics and Complex Systems for the Next Decade", Word Scientific Pres

    Predicting the extinction of Ebola spreading in Liberia due to mitigation strategies

    Get PDF
    The Ebola virus is spreading throughout West Africa and is causing thousands of deaths. In order to quantify the effectiveness of different strategies for controlling the spread, we develop a mathematical model in which the propagation of the Ebola virus through Liberia is caused by travel between counties. For the initial months in which the Ebola virus spreads, we find that the arrival times of the disease into the counties predicted by our model are compatible with World Health Organization data, but we also find that reducing mobility is insufficient to contain the epidemic because it delays the arrival of Ebola virus in each county by only a few weeks. We study the effect of a strategy in which safe burials are increased and effective hospitalisation instituted under two scenarios: (i) one implemented in mid-July 2014 and (ii) one in mid-August---which was the actual time that strong interventions began in Liberia. We find that if scenario (i) had been pursued the lifetime of the epidemic would have been three months shorter and the total number of infected individuals 80\% less than in scenario (ii). Our projection under scenario (ii) is that the spreading will stop by mid-spring 2015

    Predicting the extinction of Ebola spreading in Liberia due to mitigation strategies

    Get PDF
    The Ebola virus is spreading throughout West Africa and is causing thousands of deaths. In order to quantify the effectiveness of different strategies for controlling the spread, we develop a mathematical model in which the propagation of the Ebola virus through Liberia is caused by travel between counties. For the initial months in which the Ebola virus spreads, we find that the arrival times of the disease into the counties predicted by our model are compatible with World Health Organization data, but we also find that reducing mobility is insufficient to contain the epidemic because it delays the arrival of Ebola virus in each county by only a few weeks. We study the effect of a strategy in which safe burials are increased and effective hospitalisation instituted under two scenarios: (i) one implemented in mid-July 2014 and (ii) one in mid-August—which was the actual time that strong interventions began in Liberia. We find that if scenario (i) had been pursued the lifetime of the epidemic would have been three months shorter and the total number of infected individuals 80% less than in scenario (ii). Our projection under scenario (ii) is that the spreading will stop by mid-spring 2015.H.E.S. thanks the NSF (grants CMMI 1125290 and CHE-1213217) and the Keck Foundation for financial support. L.D.V. and L.A.B. wish to thank to UNMdP and FONCyT (Pict 0429/2013) for financial support. (CMMI 1125290 - NSF; CHE-1213217 - NSF; Keck Foundation; UNMdP; Pict 0429/2013 - FONCyT)Published versio

    Effect of degree correlations above the first shell on the percolation transition

    Full text link
    The use of degree-degree correlations to model realistic networks which are characterized by their Pearson's coefficient, has become widespread. However the effect on how different correlation algorithms produce different results on processes on top of them, has not yet been discussed. In this letter, using different correlation algorithms to generate assortative networks, we show that for very assortative networks the behavior of the main observables in percolation processes depends on the algorithm used to build the network. The different alghoritms used here introduce different inner structures that are missed in Pearson's coefficient. We explain the different behaviors through a generalization of Pearson's coefficient that allows to study the correlations at chemical distances l from a root node. We apply our findings to real networks.Comment: In press EP

    Dynamical evolution of fermion-boson stars

    Get PDF
    Compact objects, like neutron stars and white dwarfs, may accrete dark matter, and then be sensitive probes of its presence. These compact stars with a dark matter component can be modeled by a perfect fluid minimally coupled to a complex scalar field (representing a bosonic dark matter component), resulting in objects known as fermion-boson stars. We have performed the dynamical evolution of these stars in order to analyze their stability, and to study their spectrum of normal modes, which may reveal the amount of dark matter in the system. Their stability analysis shows a structure similar to that of an isolated (fermion or boson) star, with equilibrium configurations either laying on the stable or on the unstable branch. The analysis of the spectrum of normal modes indicates the presence of new oscillation modes in the fermionic part of the star, which result from the coupling to the bosonic component through the gravity

    Buffered Lugol\u27s iodine preserves DNA fragment lengths

    Get PDF
    Museum collections play a pivotal role in the advancement of biological science by preserving phenotypic and genotypic history and variation. Recently, contrast-enhanced X-ray computed tomography (CT) has aided these advances by allowing improved visualization of internal soft tissues. However, vouchered specimens could be at risk if staining techniques are destructive. For instance, the pH of unbuffered Lugol\u27s iodine (

    Elasticity of Diamond at High Pressures and Temperatures

    Full text link
    We combine density functional theory within the local density approximation, the quasiharmonic approximation, and vibrational density of states to calculate single crystal elastic constants, and bulk and shear moduli of diamond at simultaneous high pressures and temperatures in the ranges of 0-500 GPa and 0-4800 K. Comparison with experimental values at ambient pressure and high temperature shows an excellent agreement for the first time with our first-principles results validating our method. We show that the anisotropy factor of diamond increases to 40% at high pressures and becomes temperature independent.Comment: 10 pages, 3 figures, 1 tabl
    • …
    corecore