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Predicting the extinction of 
Ebola spreading in Liberia due to 
mitigation strategies
L. D. Valdez1, H. H. Aragão Rêgo2, H. E. Stanley3 & L. A. Braunstein1,3

The Ebola virus is spreading throughout West Africa and is causing thousands of deaths. In order 
to quantify the effectiveness of different strategies for controlling the spread, we develop a 
mathematical model in which the propagation of the Ebola virus through Liberia is caused by travel 
between counties. For the initial months in which the Ebola virus spreads, we find that the arrival 
times of the disease into the counties predicted by our model are compatible with World Health 
Organization data, but we also find that reducing mobility is insufficient to contain the epidemic 
because it delays the arrival of Ebola virus in each county by only a few weeks. We study the effect 
of a strategy in which safe burials are increased and effective hospitalisation instituted under two 
scenarios: (i) one implemented in mid-July 2014 and (ii) one in mid-August—which was the actual 
time that strong interventions began in Liberia. We find that if scenario (i) had been pursued the 
lifetime of the epidemic would have been three months shorter and the total number of infected 
individuals 80% less than in scenario (ii). Our projection under scenario (ii) is that the spreading will 
stop by mid-spring 2015.

For a fleeting moment last spring, the epidemic sweeping West Africa might have been stopped. But the 
opportunity to control the virus, which has now caused more than 7,800 deaths, was lost1.

The current Ebola outbreak in Western Africa is one of the deadliest and most persistent of epidemics2. 
According to World Health Organization data3 as of 31 December 2014 there have been 20,171 cases and 
7,889 deaths in three countries alone: Guinea, Sierra Leone, and Liberia. These numbers increase when 
cases and deaths from countries in which the outbreak has been officially declared over4 are included.

Cultural, economic, and political factors in that region of Western Africa2,5–9 have hampered the 
effectiveness of the intervention strategies used by the health authorities. Because of a lack of reliable 
information about local patterns of the spreading of the Ebola virus disease (EVD)10–12, the strategies cur-
rently being used, including the mobilisation of resources, the creation of new Ebola treatment centers 
(ETC), the development of safe burial procedures, and the international coordination of the efforts13 as 
of 1 January 2015 have been only partially successful.

Legrand et al.14, developed a seminal mathematical stochastic model with full mixing that reproduces 
the 1995 EVD outbreak in the Congo and the 2000 outbreak in Uganda. The population is divided into 
six compartments. Individuals in the susceptible compartment transition to exposed compartment and 
to the infectious compartment when they become infected. A percentage of these infected individuals 
are hospitalised and there are two possible outcomes: (i) they die, but before they are removed from the 
epidemic system they transition into the funeral compartment and infect other susceptible individuals, 
or (ii) they are removed from the system because they are cured. The maximum likelihood method is 
used to calibrate the model with the data.
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Rivers et al.15, used a deterministic version of this model and least-squares optimisation to fit 
the current Liberia and Sierra Leone outbreak data. Their model indicated that the epidemic would 
not reach its peak until 31 December 2015. Gomes et al.16 estimated the transmission coefficients 
using the model provided by Legrand et al.14, a Global Epidemic and Mobility model that uses a 
structured metapopulation scheme, integrating the stochastic modelling of the disease dynamic, 
high resolution census and human mobility patterns at the global scale using a high resolution 
population data17,18. The parameters were estimated by fitting the total number of cumulative deaths 
from Liberia, Sierra Leone, and Guinea during the period 6 July–9 August 2014. The transmission 
parameters obtained were used to forecast three months of EVD propagation in West Africa and 
the probability of its spreading internationally. They found that the risk of cases spreading to other 
countries was low. Poletto et al.19 used the same model and found that reducing the number of 
travellers crossing international boundaries delays the arrival of EVD by only a few weeks. Merler 
et al.20 used methods similar to those in Ref. 16 to model the effect of epidemic spreading between 
geographical regions. They took into account the movements of non-infected individuals who were 
assisting in health-care facilities, those who took care of non-hospitalised infected individuals, and 
those who attended funerals.

Population mobility—the movement of individuals seeking safer areas, better health infrastructures, 
or food supplies—strongly affects disease propagation and plays a major role in epidemic spreading 
and in the effectiveness of any intervention scheme21. In Liberia, 54% of the population over the age 
of 14 are internally displaced22. Understanding these patterns of movement is essential when planning 
interventions to contain regional outbreaks. In recent years a number of mobility studies have been pub-
lished23–25, including Wesolowski et al.21, who used mobile telephone network data to analyse mobility 
patterns that could be useful to understand the Ebola outbreak. They analysed data sources from mobile 
phone call records (CDRs), national census microdata samples, and spatial population data in order 
to estimate domestic and international mobility patterns in West African countries. The best mobility 
estimates were obtained for Senegal, Cote d’Ivoire, and Kenya, and Wesolowski et al.21,25 used them to 
produce a spatial interaction model of national mobility patterns in order to estimate how the EVD 
affected regions are connected by population flows.

We use a stochastic compartmental model and a set of differential equations, which are the 
quasi-deterministic representation of a stochastic model, to understand how population mobility 
affects the spreading of EVD between regions (counties) within Liberia. Our model quantifies how 
mobility between counties affects epidemic spreading inside Liberia, and we find that although reduc-
ing mobility among counties delays the spread of Ebola, it does not contain it. Our study indicates 
that the response implemented in August 2014 will result the extinction of the epidemic by mid-spring 
2015, but it also indicates that an earlier response would have been extremely effective in containing 
the disease.

Results
Model. In our model we classify individuals as susceptible (S), exposed (E), i.e., infected but not infec-
tious, infected (I), hospitalised (H), recovered (R), i.e., either cured or dead with a safe burial that does 
not transmit the disease, or dead (F) with an unsafe burial that transmits the disease. We also classify 
infected and hospitalised individuals according to their fate: those who are infected, will be hospitalised, 
and will die (IDH), those who are infected, won’t be hospitalised, and will die (IDNH), those who are 
infected, will be hospitalised, and will recover (IRH), those who are infected, won’t be hospitalised, and 
will recover (IRNH), those who are hospitalised and will die (HD), and those who are hospitalised and 
will recover (HR). The symbols S, E, I, H, R, and F indicate both the classification and the population 
percentage within the classification.

Figure 1 shows a schematic presentation of the model indicating the compartmental states (red boxes) 
and the transition rates among the states (connecting arrows). The I, I =  IDH + IDNH + IRH + IRNH repre-
sents the total number of infected individuals, and H =  HR +  HD the total number of those hospitalised. 
Table  1 shows the different parameters used to calculate the transition rates among the different com-
partmental states, and Table S1 (see Supplementary Information) shows the NT =  12 transitions between 
states and their rates λ i with i =  1, … NT.

To determine how geographic mobility spreads the disease, we utilise the model of West African 
regional transportation patterns developed by Wesolowski et al.21,25. In their research they applied a 
gravity model to mobile phone data for Senegal to estimate the flow of individuals between counties in 
Liberia. Although these movement data are “historical” and do not reflect how local population behav-
iour may have changed in response to the current crisis, we assume the patterns of mobility obtained 
in the Wesolowski model21,25 still represent a good approximation of the routine commuting patterns of 
the population in Liberia prior to the outbreak. This is different to post-outbreak models that describe 
travel patterns that reflect human efforts to avoid the disease or to attend funerals of epidemic victims 
(see Ref. 20 and references in therein).

We assume that there is a flow of individuals between all Nco =  15 counties of Liberia, and that only 
susceptible or exposed individuals can travel between counties. Thus the deterministic evolution equa-
tions for the number of individuals in each state in county c in our model are
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Figure 1. A schematic of the transitions between different states of our model for the EVD spreading 
in West Africa 2014 and their respective transition rates. In the model, the population is divided into ten 
compartmental states (See Table S1): Susceptible (S) individuals who in contact with infected individuals 
can become exposed (E). These E individuals after the incubation period become infected and follow four 
different scenarios: (i) Infected individuals that will be cured—recovered—without hospitalisation (IRNH); 
(ii) Infected individuals who will be cured (IRH) after spending a period on a hospital (HR); (iii) Infected 
individuals without being hospitalised (IDNH) who will die and may infect other individuals in their funerals 
(F); and (iv) Infected individuals (IDH) that even after spending a period in a hospital (HD) will die and may 
also spread the infection in the funerals (F). Recovered individual (R), can be cured or dead.

Transition Parameters Value References

Mean duration of the incubation 
period (1/α) 7 days 26-28

Mean time from the onset to the 
hospitalisation (1/γH) 5 days 29

Mean duration from onset to death 
(1/γD) 9.6 days 29

Mean time from onset to the end 
for the cured (1/γI)

10 days 28,30

Mean time from death to 
traditional burial (1/γF) 2 days 14

Proportion of cases hospitalised (θ) 50% 15

Fatality Ratio (δ) 50% 15

Mean time from hospitalization to 
end for cured (1/γI)

5 days 14

Mean time from hospitalization to 
dead (1/γHD) 4.6 days 14

Table 1.  Transition parameters used to calculate the transition rates in our epidemic model. 
Table describing the different parameters used to calculate the transition rates among the ten different 
compartmental states in our model.
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where xj (xc) is the number of individuals (susceptible or exposed), in county j (c), Nj (Nc) the total 
population of county j (c), and rjc and rcj the mobility rates from county j →  c and from county c →  j, 
respectively. Note that due to mobility the population in each county changes, but since this evolution is 
much slower than the dynamics of the disease spreading, we consider Nc to be constant (in our model 
without restriction on the mobility, the population in each county changes less than a 5% each year). In 
addition, in this model we disregard the mobility inside each county, i.e., we assume that the population 
is fully mixed. Because recovered individuals are unable to transmit the disease or be reinfected, they do 
not affect the results of our model and we disregard their movements between counties.

In the context of complex network research, this model of mobility between counties breaks the 
traditional full-mixing approach because each county can be thought of as a node of a metapopulation 
network31 in which the weight of each link is proportional to the mobility flow. Note that if in Eqs (1–10) 
we drop the index c and disregard the flow mobility we are no longer taking the counties into account, 
and we have a scenario that represents the spread throughout the entire country.

Transmission rates estimated. According to WHO data3, the first index case (patient zero) was 
diagnosed in Lofa on 17 March 2014. Thus our initial conditions in Lofa are (i) one infected individual 
in that county and (ii) the rest of the population susceptible. The estimated rates of transmission in 
day−1 obtained (using the method presented in the section Methods: Calibration with the deterministic 
equations) are βI =  0.14 [0, 0.26] in the community, βH =  0.29 [0, 0.92] in the hospitals, and βF =  0.40 [0, 
0.99] at the funerals, where the intervals correspond to the values used to obtain the average rates of 
transmission obtained from the Akaike criterion. From these rates, we construct the next-generation 
matrix32,33 (see Methods: Estimation of R0) in order to compute the reproductive number R0, defined as 
the average number of people in a susceptible population one infected individual infects during his or 
her infectious period. This parameter is fundamental when predicting whether a disease can reach a 
macroscopic fraction of individuals34. For a critical value R0 =  1 there is a phase transition below which 
no epidemic takes place, and the disease is only a small outbreak, while for R0 >  1 the probability that an 
epidemic spreading develops is greater than zero34. For the values of rates of transmission given above, 
we find that the reproductive number of the current EVD outbreak is R0 =  2.11 [1.88, 2.71], well above 
the critical threshold R0 =  1, where the interval was obtained from the transmission coefficient selected 
from the Akaike criterion. This value of R0 is compatible with the one obtained by Rivers et al.15. We 
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run our stochastic simulations presented in Methods: Stochastic model for these estimated values in order 
to compare the total number of cases with the data given by WHO before the interventions began in 
the middle of August 201413. Figure 2(a) plots the number of cumulative cases as a function of time for 
1000 realisations of our stochastic model and compares the results with WHO data3 without any shift 
correction. The individual realisations have the same shape as the data but due to the stochasticity at the 
beginning of the outbreak the exponential increase in the number of cases occurs at different moments.

Figure  2(b) plots the cumulative number of cases as a function of time with the initial conditions 
explained above when a temporal shift is applied to the stochastic simulations. The agreement between 
the simulations and the data indicates that our model can successfully represent the dynamics of the 
spreading of the current Ebola outbreak in Liberia.

The geographical spread of Ebola cases across Liberia due to mobility. The mobility among 
the 15 counties allows us to compute the arrival time ta in each county, assuming that the index case 
was in Lofa on 17 March 2014. Figure 3 shows the violin plots of the arrival times ta of the disease as 
it spreads from Lofa County into the other 14 Liberian counties and compares our results with those 
supplied in the WHO reports (circles).

Comparing the results of our predictions of the arrival times of the first case as it spreads to the 
other counties with the WHO data (see Fig. 3a), all counties except Margibi and Grand Gedeh fall into 
a 95% confidence interval. This could be caused by (i) an underestimation of the number of cases in the 
WHO data Ref. 3 due to a lack of information1, or (ii) because the data recorded are actually the times 
of reporting and not the times of onset.

As the disease began to spread, population mobility decreased. This was in part due to imposed reg-
ulations attempting to contain the disease but also due to the population’s fear of contagion. We reflect 
this in our model by decreasing the mobility value. Figure  3(b) shows the arrival times produced by 
our model when, as a strategy for slowing the spread, the mobility is reduced by 80%. Note that this 
reduction delays the arrival of EVD in each county by only a few weeks. This suggests that reducing the 
mobility of the individuals between counties will not stop the spread but will slow it sufficiently that 
other strategies can be developed and applied. Reducing mobility is also insufficient when considering 
international transmission of the disease19 and more aggressive interventions are needed. We believe 
that an increase in both the percentage of infected individuals receiving hospitalisation in ETCs and the 
percentage of burials that follow procedures that do not transmit the disease are essential in containing 
the epidemic.

Interventions and time to extinction. To contain the disease and reduce its transmission we reduce 
mobility by 80%, increase the number of burials following procedures that do not transmit the disease, 
and increase the rate of hospitalisation in ETCs. Because health workers in ETCs have specialised train-
ing, we assume that the probability that they will be infected is greatly reduced and that the transmission 
coefficient βH is decreased. A sufficiently rapid response to the EVD by the ETCs requires that βH be 
decreased exponentially to a final value of 10−3, and hospitalisation θ must be increased exponentially to 
reach θ =  1. On the other hand, when changing local burial customs we assume that βF decreases linearly 
and approaches zero. Changing local burial customs involves recruiting and training burial teams, takes a 
longer period of time, and is less aggressive than other kinds of intervention. This approach allows us to 

Figure 2. Cumulative number of cases in Liberia for the parameters given in Table 1. Cumulative 
number of cases obtained with our stochastic model with the transition presented in Table S1 and Eq. (11) 
in Liberia with 1000 realisations (gray lines) and the data (symbols) without temporal shift (a) and (b) with 
a temporal shift using sc =  200. The transmission coefficients βI =  0.14, βH =  0.29 and βF =  0.40 were obtained 
as explained in Methods: Calibration with the deterministic equations. From the WHO’s data the index case is 
located at Lofa on March 17 2014.
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estimate an upper limit for the end of the epidemic, because we did not take into account other measures 
applied, such as, contact tracing, which could make the estimated end to the epidemic occur earlier.

We apply these changes to simulate a two-month period, and the final result is that R0 decreases from 
2.11 to R0 =  0.69, which is below the epidemic threshold. We consider two scenarios, (i) implementing 
the strategy beginning August 15 (the middle of the month indicated by WHO36 for the outbreak of EVD 
in West Africa) in which all symptomatic individuals are admitted to ETCs and safe burial procedures 
begin to apply, or (ii) implementing the same strategy, but beginning July 15 in order to study how 
delaying the implementation of the strategies affected containment. Our goal is to demonstrate that if 
the international response had been more rapid, the spreading disease would have been contained with 
a 50% probability by early March 2015 instead of the end of May 2015.

Figure 4(a,b) show that reducing the number of cases produced in hospitals and funerals reduces the 
cumulative number of cases to a plateau lower than the one predicted when no strategies are applied37. 
Figure  4(a) shows that if our strategy had been applied in the middle of July the cumulative number 
of cases and deaths would have been approximately 80% lower than the reported number that resulted 
when the strategies were instituted in the middle of August. Figure 4(b) shows that when we apply the 
strategy of our model to the actual mid-August starting time, it predicts (between the 95% confidence 
interval of the median) the actual trend of cases and deaths reported in the WHO data in mid-March 
2015.

Our stochastic model allows us to quantify how the two different strategy implementation times affect 
the extinction time of the EVD epidemic. Figure 4(c,d) show the extinction time distributions, i.e., when 
E =  I =  H =  F =  0, when the strategy is implemented in July 2014 and August 2014, respectively (for the 
initial conditions, we use the cases provided by WHO for these dates). We find that the median of this 
distribution when the strategy is implemented in July is 6 March 2015 (with a 95% confidence interval 
from 5 January 2015 to 1 July 2015) and when it is implemented in August is 25 May 2015 (with a 
95% confidence interval from 28 March 2015 to 20 September 2015). Implementation in mid-August 
generated 8,000 cases of the disease, but an implementation in mid-July would have reduced the time 
to disease extinction by three months and generated only 1,700 cases. The mid-August implementation 
faced a larger number of cases, the disease progression had a greater inertia against the strategy, and the 
cumulative number of cases required a longer time to go from an exponential regime to a subexponential 
regime. Thus if the health authorities and the international community had acted sooner the number of 
infected people would have been much lower.

Discussion
In this manuscript we study the spreading of the Ebola virus using stochastic and deterministic com-
partmental models that incorporate the mobility of individuals between the counties in Liberia. We 
find that our model describes well the arrival of the disease into each of the counties, that reducing 
population mobility has little effect on geographical containment of the disease, and that reducing pop-
ulation mobility must be accompanied by other intervention strategies. We thus examine the effect of 
an intervention strategy that focuses on both an increase in safer hospitalisation and an increase in safer 
burial practices. Our study indicates that the intervention implemented in August 2014 reduced the total 
number of infected individuals significantly when compared to a scenario in which there is no strategy 
implementation, and it predicts that the epidemic will be extinct by mid-spring 2015. We also use our 

Figure 3. (a) Violin plots representing the distribution of arrival time ta to each county considering 
the mobility flow of individuals among counties21 without any restriction on the mobility. The results 
are obtained from our stochastic model with the estimated transmission coefficients over 1000 realisations. 
Error bars indicate the 95% confidence interval. From WHO’s reports the index case (patient zero) was 
located at Lofa at 17 of March 2014. The circles represent the values of ta reported by WHO. The very early 
case of Margibi is below the 5% probability, and it is explained in Ref. 35. (b) Violin plots representing the 
distribution of arrival time ta to each county reducing the mobility among counties by 80%.
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model to consider the difference in outcome had the strategy been implemented one month earlier. We 
find that the cumulative number of cases and deaths would have been significantly lower and that the 
epidemic would have ended three months earlier. This indicates that a rapid and early intervention that 
increases the hospitalisation and reduces the disease transmission in hospitals and at funerals is the most 
important response to any possible re-emerging Ebola epidemic.

Although our model simplifies the dynamics of epidemic spreading, it provides an adequate picture 
of the evolution in the number of cases and deaths. In future research we will incorporate more aspects 
of population mobility and intervention strategies carried out by health authorities. This will enable us 
to describe in greater detail the evolution of an epidemic and the efficacy of different strategies.

Finally, the methods used in this manuscript to study Liberia can also be applied to Guinea and Sierra 
Leone as soon as high quality epidemic data from those countries become available. Future work should 
include both countries in order to quantify the cases spreading from them into Liberia.

Methods
Stochastic model. We generate a stochastic compartmental model based on the Gillespie algorithm. 
At each iteration of the simulation we draw a random number τ (which represents the waiting time until 
the next transition) from an exponential distribution with parameter Δ  given by parameter

∑∑ ∑∑λΔ = + ( + ) / . ( )
= = = =
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Here the first term i
jλ  is the rate of transition between states i in county j given in Table S1, and the 

second term corresponds to the mobility rates given in Eq. (11) with x =  E and x =  S.

Calibration with the deterministic equations. To estimate the transmission coefficients βI, βH, 
and βF we calibrate a system of differential equations using least-squares optimisation with the data 
of the total cases from Liberia in the March-August period3, and we apply a temporal shift, which we 
will explain below. We compute the least-square values using a set of parameters generated using Latin 
hypercube sampling (LHS) in the parameter space [0, 1]3, which we divide into 106 cubes of the same 
size. For each cube we choose a random point as a candidate for (βI, βH, βF) in order to compute the 

Figure 4. Evolution of the number of cases (black) and deaths (red) when a reduction of 80% in the 
mobility rates is applied. The value of βH decreases exponentially to reach the value 10−3 and βF decreases 
linearly to reach a 0% of their original values. Also the hospitalisation fraction increases exponentially to 
reach θ =  1. All reductions in the transmission coefficient were applied during two months, for (a) beginning 
at July 15th and (b) August 15th. Solid lines were obtained from the evolution equations (1–10) and the 
symbols are the data. The box plots show the median, the 25th and 75th percentile and 95% confidence 
interval of the median, obtained from the stochastic simulations. (c) and (d) are the distribution of time to 
extinction of the EVD epidemic obtained from the stochastic simulations, when the strategy is applied from 
middle July and from middle August 2014, respectively. We show these distributions from December 1st, 
2014 to December 1st, 2015.
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standard deviation between the data and the system of differential equations obtained from this point. 
At the beginning of the epidemic there are very few cases (infected individuals), thus the evolution of 
the disease is in a stochastic regime in which the dispersion of the number of new cases is comparable 
to its mean value (see Refs 38–40. When the number of infected individuals increases to a certain level, 
however, the epidemic evolves toward a quasi-deterministic regime and the evolution of the states of 
the stochastic simulation is the same as the states obtained using the solution of the evolution equations 
(Eqs 1–10). Nevertheless, due to fluctuations in the initial stochastic regime, a random temporal displace-
ment of the quasi-deterministic growth of the number of accumulated cases is generated. Thus to remove 
this stochastic temporal shift and to compare the three aspects—the simulations, the numerical solution, 
and the data—we set the initial time at t =  0 when the total number of cases is above a cutoff sc

38–40. For 
the calibration of the transmission coefficients, we use sc =  200 (which corresponds to the cumulative 
number of cases after 21 July, according to the WHO data3), and using the least square method we give 
the data above this cutoff 50% of the weight because we are assuming that above sc the evolution of the 
disease spreading is quasi-deterministic. Finally, after we compute the sum of square residuals for each 
point in the parameter space, we apply the Akaike information criterion (AIC) and average those candi-
dates of (βI, βH, βF) with a AIC difference Δ  <  241 to obtain a model-averaged estimate of the transmis-
sion coefficients. An alternative method for estimating the transmission coefficients using an exponential 
fitting is discussed in Supplementary Information: Calibration. We find that this fitting generates the 
same set of values of transmission coefficients than the method with a temporal shift sc. Additionally, in 
Supplementary Information: Sensitivity Analysis we discuss the sensitivity of the estimated values of the 
transmission coefficients when θ and δ change.

The mobility data for the Wesolowski model were provided by Flowminder21,42,43 and the total cumu-
lative case data used to calibrate the model were those supplied in reports generated by WHO3. Note 
that in this work we do not calibrate the model to cases in each county because it was shown by Chowell  
et al.44 that globally the number of cases grows exponentially but locally can be better approximated by 
a polynomial than by an exponential growth. This cannot be addressed using our model because math-
ematically a differential equation with constant rates only reproduces an exponential growth.

Weitz and Dushoff45 recently demonstrated that calibration causes an identification problem, i.e., that 
many combinations of the coefficient transmission values reproduce the real evolution of the number of 
cases, which is compatible with our finding that the calibrated transmission coefficients are in a plane 
(see Supplementary Information: Calibration). This point should be addressed in future research.

Estimation of Ro. In order to compute the reproduction number R0, following van den Driessche  
et al.32 and Diekmann et al.33, we construct a next-generation matrix.

First, using the Jacobian matrix of the system of Eqs (1–10) we construct the “transmission matrix” 
F, and the “transition matrix” V, obtaining

=
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ji j

i j

with i ≠ j.
Note that the mobility rates are only in the transition matrix. Using these matrices we construct the 

next generation matrix, defined as FV−1. Finally, the reproduction number is given by the spectral ratio 
ρ of the next generation matrix, R0 =  ρ(FV−1), i.e., its highest eigenvalue. Note that when the mobility 
rates go to zero, R0 decreases, i.e., in this limit an infected individual in a given county cannot interact 
with people from other counties and can only transmit the disease to susceptible individuals in the same 
county.
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