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Compact objects, like neutron stars and white dwarfs, may accrete dark matter, and then be
sensitive probes of its presence. These compact stars with a dark matter component can be modeled
by a perfect fluid minimally coupled to a complex scalar field (representing a bosonic dark matter
component), resulting in objects known as fermion-boson stars. We have performed the dynamical
evolution of these stars in order to analyze their stability, and to study their spectrum of normal
modes, which may reveal the amount of dark matter in the system. Their stability analysis shows
a structure similar to that of an isolated (fermion or boson) star, with equilibrium configurations
either laying on the stable or on the unstable branch. The analysis of the spectrum of normal modes
indicates the presence of new oscillation modes in the fermionic part of the star, which result from
the coupling to the bosonic component through the gravity.

I. INTRODUCTION

Scalar fields are of great interest in several fields of
physics. In high energy physics they arise naturally in
several unification theories, such as scalar-tensor theo-
ries of gravitation from string theory. In cosmology, they
have been considered to provide inflationary solutions in
the early universe and an alternative explanation for dark
energy. In addition, they have also been proposed as
strong candidates of dark matter, the matter that is re-
sponsible for the formation and evolution of structures
in the Universe. For the latter type of models, one of
the possibilities assumes that dark matter is composed
by bosonic particles which may condensate into macro-
scopic self-gravitating objects (i.e., self-gravitating Bose-
Einstein condensates) commonly known as boson stars.
Since the seminal paper in the late sixties by Ruffini and
Bonazzola [1], boson stars in General Relativity have
been extensively studied in may different contexts (for
a recent review see [2]).
On the other hand, the formation of either a boson or

a fermion star would be susceptible to subsequent mix-
ture by fermions/bosons, and this fact opens a whole
new possibility for the formation of objects made of both
fermionic and bosonic particles. Even if one of these ob-
jects is formed in a medium absent of either bosonic or
fermionic particles, the latter may be accreted in later
stages. In particular, bosonic dark matter particles may
accrete on compact stars, and depending on the model
considered, their effects on the star will be different and
possibly observable.
In the context of WIMPs, if the dark matter is self-

annihilating, the released energy due to the WIMP an-
nihilation inside the neutron star can increase the tem-
perature and be observable in old stars [3]. If it does not
self-annihilate, the dark matter will cluster in a small re-
gion at the center of the neutron star, increasing their
compactness and ultimately leading to a gravitational
collapse [4]. Neutron stars may be therefore sensitive
indirect probes of the presence of dark matter, and can

be used to set constraints both on the density and on the
physical properties of dark matter.

Recent studies investigate possible changes in the
structure of the star in the presence of dark matter, by
using a two-fluid model[5]. In this paper, we perform
a similar analysis by modeling systems which contain a
fermionic compact star (we consider it to be a neutron
star) and a bosonic dark matter component represented
by a boson star. The resulting objects are known as
fermion-boson stars. These mixed stars were first in-
troduced by Henriques et. al. [6] (and further studied
in [7, 8]), where the fermionic matter was described by a
perfect fluid with the Chandrasekhar equation of state,
while the bosonic component is modeled by using a real
quantized scalar field as in [9]. The bosons and the
fermion particles are coupled only through gravity (no-
tice however that non-minimal couplings with the scalar
field can arise in other scenarios, such as in neutron stars
with hidden extra dimensions [10] or in tensor-scalar the-
ories of gravitation [11]). We will perform a dynamical
analysis of these mixed stars by using a simple polytropic
equation of state, as it is standard for cold neutron stars,
and a complex scalar field to describe the bosonic com-
ponent.

The equilibrium configurations for either an isolated
boson or fermion stars are described, respectively, by the
central value of the scalar field φc, and the central value of
the fluid density ρc [1, 12]. These configuration are there-
fore characterized by a single parameter σc, so in this case
there are stability theorems [13, 14] which indicate that
the critical mass (separating the unstable from the stable
branch) is located at the extrema ∂M/∂σc = 0. However,
the mixed fermion-boson stars are parametrized not by
one, but by two quantities (φc, ρc). This implies that the
analysis of stability is more complicated than in the iso-
lated star case, since the previous stability theorems can
not be directly applied. One can still analyze their stabil-
ity, among other alternatives, by studying the radial per-
turbations of these equilibrium configurations and then
analyzing the eigenvalues of these modes in the linearized
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equations as in [15–19], or by evolving dynamically these
perturbations by solving the full non-linear equation of
motion [20–23]. In [24, 25] Henriques et al. described a
method to perform the analysis of stability of the boson-
fermion stars by using the binding energy and the num-
ber of bosonic and fermionic particles as a function of the
two free parameters. In this paper, we propose a similar
criterion, and our results are compared with the full nu-
merical solution of the equations of motion. In addition
to the stability analysis, we follow the migration of a star
from an unstable to the stable branch, a process observed
already in isolated boson and fermion stars. Finally, we
study the dependence of the quasi-normal modes of the
mixed star with respect to their fraction of bosonic mat-
ter.
The paper is organized as follows. In Sec. II we intro-

duce the formalism used to obtain the set of evolution
equations that describes the spacetime geometry and the
boson-fermion matter contents. In Sec. III we describe
how to construct the initial data for the boson-fermion
stars, and propose a method to find the stability of the-
ses objects. The results of the dynamical evolution for
equilibrium configurations (i.e., both stable and unsta-
ble) are presented in Sec. IV, together with the spectrum
of the quasi-normal modes of the stable stars. Finally,
conclusions and final remarks are presented in Sec. V.
Throughout this paper we use that the indices are a, b, .
taken to run from 0 to 3, while indices i, j, .. run from
1 to 3. We also adopt the standard convention for the
summation over repeated indices.

II. FORMALISM

Fermions minimally coupled to bosons can be modeled
by considering a stress-energy tensor with contributions
from a perfect fluid and a complex scalar field, in the
form

Tab = T
(fluid)
ab + T

(φ)
ab , (1)

T
(fluid)
ab = [ρo (1 + ǫ) + P ]uaub + Pgab , (2)

T
(φ)
ab =

1

2
[∂aφ

∗∂bφ+ ∂aφ∂bφ
∗]−

1

2
gab

[

∂αφ∗∂αφ+m2|φ|2
]

. (3)

The perfect fluid is represented by the fermionic phys-
ical (primitive) variables, namely the pressure P , rest-
mass density ρo, internal energy ǫ, and four-velocity ua,
whereas the complex scalar field φ describes a Bose-
Einstein condensate of bosonic particles of mass m. The
fluid and the scalar field do not interact directly, and
are only coupled through gravity, as it is expected for
WIMPS. The equations of motion for the fluid and the
scalar field are obtained from the conservation laws of the
stress-energy tensor and the baryonic number

∇aT
ab
(fluid) = 0 , ∇a(ρou

a) = 0 , (4)
and the Klein-Gordon equation

∇a∇aφ = m2φ , (5)

which together with the Einstein equations Gab = 8πTab
constitute the system of equations governing the dynam-
ics.
We restrict our study to spherically symmetric stars,

and then consider the time-dependent metric

ds2 = −α2(t, r) dt2 + grr(t, r)dr
2 + r2gθθ(t, r) dΩ

2. (6)

The evolution equations for the spacetime are obtained
by considering the Z3 formulation of the Einstein equa-
tions [26], which introduces the following independent
quantities to form a first order system of equations,

Ar =
∂rα

α
, Drr

r =
grr

2
∂rgrr , Drθ

θ =
gθθ

2
∂rgθθ ,

Kr
r = − 1

2α

∂tgrr
grr

, Kθ
θ = − 1

2α

∂tgθθ
gθθ

. (7)

The full system of equations for this formulation is in-
cluded in appendix A. The remaining freedom in the
choice of coordinates of the line element (6) is related
to the prescription for the lapse function, and a common
option is the harmonic slicing condition

∂tα = −α2trK , (8)

where trK = Kr
r + 2Kθ

θ. By using the metric (6), the
equations of motion for the perfect fluid (4) and the scalar
field (5) can be written explicitly as:

∂t(
√
γD) = −∂r(

√
γαvrD)− 2

r

√
γαvrD, (9a)

∂t(
√
γU) = −∂r(

√
γαS̃r) +

√
γα

[

S̃r
rKr

r + 2S̃θ
θKθ

θ − S̃r
(2

r
+Ar

)]

, (9b)

∂t(
√
γS̃r) = −∂r(

√
γαS̃r

r) +
√
γα

[

S̃r
r
(

Drr
r − 2

r

)

+ 2S̃θ
θ
(1

r
+Dθ

rθ

)

− UAr

]

, (9c)

∂tφt = ∂r(α
√
grrφr) + α

√
grr

[

2
(

Drθ
θ +

1

r

)

φr + 2
√
grrKθ

θφt −m2grrφ
]

, (9d)
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where
√
γ =

√
grrgθθ and we have introduced the auxil-

iary fields

φr = ∂rφ , φt =

√
grr

α
∂tφ , (10)

to reduce the Klein-Gordon equation to first order in
space and time.
The evolution of the fluid is described in terms of the

conserved variables, namely the mass density D, the mo-
mentum density S̃r and the energy density U . They are
related to the primitive variables (i.e., the rest-mass den-
sity ρo, the pressure P and the velocity vr) by the fol-
lowing relations

D = ρ0W , U = hW 2 − P , S̃r = hW 2vr , (11)

where h = ρ0(1 + ǫ) + P is the enthalpy and W =
1/

√
1− vrvr the Lorentz factor. In the right-hand-side of

their evolution equations, the spatial projections of the
stress-energy tensor take the form,

S̃r
r = hW 2vrv

r + P , S̃θ
θ = P .

During the evolution, the relations (11) must be in-
verted in order to obtain the primitive physical quantities

(which are necessary for computing the rhs) from the con-
served evolved fields. In general, this conversion can not
be performed analytically, so appendix B explains in de-
tail our numerical algorithm for obtaining the primitive
fields.

III. INITIAL DATA

Initial data for the fermion-boson stars involves the in-
trinsic metric gij and extrinsic curvature Kij on a given
hyper-surface, as well as the fermionic fluid configura-
tion in terms of its primitive variables (ρ, ǫ, vi) and the
bosonic scalar field φ. Assuming a static spherically sym-
metric metric in Schwarzschild coordinates

ds2 = −α2(r)dt2 + a2(r)dr2 + r2dΩ2 , (12)

a harmonic form of the scalar field φ(t, r) = φ(r)e−iωt,
and a star in hydrostatic equilibrium with vr = 0, the
following system of ODEs is obtained:

da

dr
=

a

2

{

1

r
(1− a2) + 4πGr

[(

ω2

α2
+m2

)

a2φ2(r) + Φ2(r) + 2a2ρ(1 + ǫ)

]}

, (13a)

dα

dr
=

α

2

{

1

r
(a2 − 1) + 4πGr

[(

ω2

α2
−m2

)

a2φ2(r) + Φ2(r) + 2a2P

]}

, (13b)

dφ

dr
= Φ(r) , (13c)

dΦ

dr
=

(

m2 − ω2

α2

)

a2φ−
[

1 + a2 − 4πGa2r2
(

m2φ2 + ρ(1 + ǫ)− P
)] Φ

r
, (13d)

dP

dr
= − [ρ(1 + ǫ) + P ]

α′

α
. (13e)

The system is completed by choosing the equation of
state (EoS) that relates the pressure with the other fluid
quantities. As it is standard in simple models of cold
stars, we will adopt here a polytropic equation of state
P = KρΓ, with the particular choice of Γ = 2 and
K = 100, which corresponds to masses and compactness
in the range of neutron stars [12].

We will use units such that c = 1, and the variables can
be renormalized to absorb the factors G and m, so that
the basic scale of the stars will be given by {K,Γ}. The
final system is an eigenvalue problem for the frequency
of the boson star ω as a function of two parameters; the
central value of the scalar field φc and the density of the
fluid ρc. This system can be solved by using the Shooting
Method [27].

The appropriate boundary conditions for the scalar
field and metric functions are obtained by imposing the
conditions of regularity at the origin and asymptotic flat-
ness at infinity. The condition at r = 0 for the fluid pres-
sure is obtained from the polytropic EoS as a function of
ρc. Thus, the full boundary conditions are

a(0) = 1, α(0) = 1, φ(0) = φc, (14a)

Φ(0) = 0, P (0) = KρΓc , (14b)

lim
r→∞

α(r) = lim
r→∞

1

a(r)
, (14c)

lim
r→∞

φ(r) ≈ 0, lim
r→∞

P (r) = 0. (14d)

After the solution is found, a change of coordinates
from Schwarzschild to maximal isotropic ones is per-
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formed

ds2 = −α2(r̃)dt̃2 + ψ4(r̃)
(

dr̃2 + r̃2dΩ2
)

, (15)

which are more convenient for our numerical evolution
and for future comparisons in three dimensions. All of
our simulations will be shown in these coordinates, and
for simplicity we will substitute r̃ → r hereafter.
The total gravitational mass is computed by the

asymptotic value of the metric coefficients

MT = lim
r→∞

r

2

(

1− 1

α2

)

. (16)

The U(1) symmetry in the Lagrangian of the scalar field
ensures the conservation of a Noether charge which can
be associated with the number of bosons NB [23, 24].
Correspondingly, the conservation of baryonic number al-
lows to define a number of fermions NF . These quantities
can be computed by integrating their densities,

∂NB

∂r
=

4πaωφ2r2

α
,

∂NF

∂r
= 4πaρr2 . (17)

Therefore, the radius of the fermionic/bosonic parts of
the star can be defined as the surface containing 99% of
the corresponding particles.

A. Boson and fermion stars

As a basic test of our initial data implementation we
compare our equilibrium configurations with previously
published results for isolated boson stars and fermion
stars, which are the limits of our system of equations
when ρc → 0 and φc → 0 respectively.
Fig. (1) shows the total mass MT of boson stars and

fermion stars as a function of the corresponding radius
R99. In agreement with the results of previous works, we
have found that the maximum massMmax (i.e., the value
of the mass that separates the stable M < Mmax from
the unstable M > Mmax configurations) for the case of
boson stars is Mmax = 0.633, whereas for fermionic stars
is Mmax = 1.637 with Γ = 2 and K = 100.

B. Mixted boson-fermion stars

As we mentioned before, the equilibrium configurations
of mixed boson-fermion stars are more involved and de-
pend on the two parameters φc and ρc. The total mass of
the stars as a function of these parameters is plotted in
Fig. 2, showing that the maximum mass is obtained for
the isolated neutron star case (i.e.,when φc = 0). This is
direct consequence of our choice of the parameters {K,Γ}
in the equation of state, that sets the scale and the com-
pactness of the mixed stars. With the current choice,
the stars will be composed predominantly by fermions,
which can produce stars with much higher compactness
than boson stars.
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FIG. 1: Initial data of isolated stars The total masses of the
boson MB and fermion MF stars, as functions of their cor-
responding radius R99. The maximum mass agrees in each
case with previous results found in the literature, namely
Mmax = 0.633 for boson stars, andMmax = 1.637 for fermion
stars.
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FIG. 2: Initial data of mixed fermion-boson stars The total
mass of the equilibrium configurations of the mixed stars, as
a function of φc and ρc. The maximum mass for a given value
of ρc, is always found when φc = 0.

The profiles of the different non-trivial fields for a rep-
resentative case are plotted in Fig. 3 , which clearly sat-
isfy the regularity conditions at the origin and asymptotic
flatness. The presence of the fermionic fluid produces
a deeper gravitational potential than the one produced
solely by the boson star, therefore contracting the bosonic
component to a smaller radius, comparable to the one of
the fermionic matter.
For a fixed value of the total massMT , we find that the

number of bosons increases for φc ≥ 0, reaches a max-
imum, and then decreases. Notice that since the mass
is kept fixed, the central density ρc must change as we
vary φc. The number of fermions has consequently the
complementary behavior; it decreases until reaching a
minimum and then increases. The same profiles are ob-
served in these quantities, switching NF by NB, when
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FIG. 3: Initial data of mixed fermion-boson stars. The pro-
files of the scalar field φ(r), the fermionic density ρ(r), and
the conformal factor ψ(r) for one typical configuration corre-
sponding to NB/NF = 0.1 and MT = 1.4.

they are represented as a function of ρc instead of φc.
This behavior is illustrated in Fig. 4, where the num-
ber of particles is plotted as a function of φc and ρc for
the configurations with mass MT = 1.4. In the next sec-
tion, we will describe the evolution of the two equilibrium
configurations marked with symbols in Fig. 4, one with
NB = 10%NF which is on the left of the maximum value,
and the other with NB = 10.7%NF which is on its right.
Our simulations show that the first configuration is in the
stable branch, while the second one lies in the unstable
branch, indicating that the maximum/minimum of these
curves is the critical point.

The stability analysis for the boson-fermion stars,
which can be performed for instance by solving the per-
turbed equations, is much more complicated than for iso-
lated boson or fermion stars. The main reason, as it was
mentioned before, is that these mixed configuration have
two free parameters (i.e., the central values of the scalar
field φc and the density of the perfect fluid ρc) instead of
just one, so that the stability theorems for a single pa-
rameter solutions can not be directly applied. One possi-
bility would be to find a method to perform the stability
analysis such as those described in [7, 8, 24, 25].
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FIG. 4: Initial data of mixed fermion-boson stars The number
of fermions NF and bosons NB for the equilibrium configura-
tions as a function of φc (top panel) and ρc (bottom panel).
The position of the maximum/minimum corresponds to the
critical point which separates the stable and the unstable so-
lutions. The two configurations considered in the next section
are marked, one on each side of the maximum/minimum, cor-
responding to NB = 10%NF (‡) and NB = 10.7%NF (¶).

Instead of performing this stability analysis, we pro-
pose a different way to define the stability of the mixed
configurations based on the critical value of the num-
ber of particles. Our criterion states that the configura-
tions with the number of bosons (fermions) on the left
of the maximum (minimum) are stable configurations,
while configurations that are on the right of the maxi-
mum (minimum) are unstable. The solution space of sta-
ble/unstable configurations using this criterion is shown
in Fig. 5. This will be validated through our numerical
simulations in the next section.
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FIG. 5: Initial data of mixed fermion-boson stars. Regions
of stability/instability for the equilibrium configurations of
the mixed boson-fermion stars, according to the criterion of
maximum/minimum of the number of bosons/fermions for a
fixed MT , see the text for more details. We mark the two
configurations corresponding to NB = 10%NF (‡) and NB =
10.7%NF (¶).

IV. NUMERICAL SIMULATIONS

In this section we analyze the dynamics of mixed stars,
and address different issues like the stability of these sys-
tems or their spectrum of normal modes. In order to
determine the properties of the mixed star equilibrium
configurations described in the previous section, we per-
formed long-term numerical evolutions of the discretized
Einstein-Klein-Gordon-Hydrodynamic system (9).
First of all, we write the system in flux conservative

form

∂tU+ ∂kF
k(U) = S(U) , (18)

so that we can apply numerical algorithms based on
Finite Volume methods. The spatial discretization of
the geometry and the boson fields is performed using a
third order accurate Finite Volume method [26], which
can be viewed as a fourth order finite difference scheme
plus third order adaptive dissipation. The dissipation
coefficient is given by the maximum propagation speed
in each grid point. For the fluid matter fields, we
use a High Resolution Shock Capturing method with
Monotonic-Centered limiter. The time evolution is per-
formed through the method of lines using a third order
accurate Strong Stability Preserving Runge-Kutta inte-
gration scheme [28], with a Courant factor of ∆t/∆r =
0.25 so that the Courant-Friedrichs-Levy (CFL) condi-
tion dictated by the principal part of the equations is
satisfied. Most of the simulations presented in this work
have been done with a spatial resolution of ∆r = 0.01,
in a domain with outer boundary situated at r = 600.
We use maximally dissipative boundary conditions for
the spacetime variables and the boson fields, and outflow
boundaries for the fluid matter fields.

A. Stable boson-fermion stars
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FIG. 6: Evolution of stable fermion-boson stars The central
values of the density and the (peaks of the oscillatory) scalar
field (top), and the mass and the number of bosonic and
fermionic particle (bottom). All the quantities remain very
close to their initial values, suggesting that the star is stable
against perturbations.

We start with the dynamical evolution of the mixed
equilibrium solution corresponding to NB = 10%NF and
total mass MT = 1.4, shown in Fig. 4. Since it is located
on the left of the critical value, we expect this configura-
tion to be stable.
The evolution displays a combination of the behav-

iors that are typical for isolated boson and fermion stars.
The scalar field oscillates with its characteristic eigenfre-
quency, while the fluid density oscillates slightly around
its initial state due to the perturbation introduced by
the numerical truncation errors. The values of the peaks
of the oscillatory scalar field φmax

0 and the fluid density
ρ0 at the center of the star are plotted as a function of
time in the top panel of Fig. 6, while the total mass MT

and the number of particles NB, NF are displayed in the
bottom panel.
These quantities remain very close to their initial value

for many dynamical times (except for a tiny drift due to
numerical dissipation), indicating that the configuration
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is indeed stable. In order to asses the robustness and ac-
curacy of our numerical implementation, we have evolved
this configuration with three different spatial resolutions
∆r = (0.02, 0.01, 0.005), in a domain of r = 600, for
t ≈ 2000, finding that the numerical solution converges
at second order. The energy constraint (A6) is small dur-
ing the evolution and converges to zero, as it is shown in
Fig. 7.
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∆r=0.005
∆r=0.01
∆r=0.02

FIG. 7: The energy constraint (A6) for three different reso-
lutions ∆r = 0.005 (red), ∆r = 0.01 (green), and ∆r = 0.02
(blue), showing second order convergence.

B. Unstable stars

The numerical evolution of the equilibrium configura-
tion with NB = 10.7%NF andMT = 1.4 presents a more
dynamical behavior. This configuration lies on the right
of the critical values of the number of particles NF and
NB in Fig. 4, indicating that it must be unstable under
perturbations.

The initial stage of the evolution is similar to the pre-
vious case of a stable star, with the scalar field oscillat-
ing mainly with its eigenfrequency, and the neutron star
oscillating due to the perturbation introduced by the in-
herent numerical truncation errors. However, these oscil-
lations grow rapidly in amplitude, driving the dynamics
to a non-linear regime; the star is eventually migrating
from the unstable to the stable branch. The central val-
ues ρ0 and the maximum φmax

0 , the total mass MT , and
the number of particles NB and NF , are plotted in Fig. 8.
The central values show large variations until t ≈ 10000,
then change slowly, and finally settle down onto a new
stable configuration with practically the same number of
bosonic particles, but with around 10% less mass and
number of fermions than the original star.
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FIG. 8: Evolution of unstable fermion-boson stars Same as
fig. 6 for a star on the right of the critical curve. The central
values of the density and (the peaks of) the scalar field depart
quickly from their initial values, indicating that the star is
unstable. The evolution becomes non-linear and describes the
migration of the star from the unstable to the stable branch.

C. Quasi-Normal Modes of the stable stars

As it has already been mentioned, the fermion-boson
star will oscillate around its stable configuration due to
the perturbations introduced by the numerical trunca-
tion errors, in a similar way as an isolated fermion or
boson star. These perturbations will excite the charac-
teristic modes of the mixed star, so that the oscillations
will be a superposition of normal modes, each one with
a characteristic frequency.

By analyzing the central oscillations of the different
fields, and in particular, of the central density of the
star, we can study the structure of the normal modes of
the fermion-boson stars. The frequencies of the normal
modes are well-known for both isolated neutron and bo-
son stars, but they have not been yet studied for mixed
stars. The pulsations of compact objects are of great
importance for relativistic astrophysics, because they of-
fer the possibility of extracting information about the
star (for instance the radius, mass and equation of state)
from the detection of the associated gravitational waves
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(see [29] for a review). Although our spherical symmetry
assumption only allow us to study radial modes (i.e., the
fundamental mode and its overtones), it is still represen-
tative to show how these modes may change in a neutron
star in the presence of a bosonic dark matter component
that couples to fermions only through gravity.

We will restrict our analysis to a fermion-boson star
with total mass MT = 1.4, and parametrize different
mixed stars by increasing the amount of bosons relative
to fermions, corresponding to the fractions NB/NF =
{0, 2.5, 5, 7.5, 10}%. The details of the parameters of the
stars are summarized in Table I. We have evolved for long
times t ≈ 6000 in order to get at least 50 oscillations of
the central density, which will produce a clear spectrum
with sharp peaks in the frequency domain. The Fourier
transform of this quantity is shown in the top panel of
Fig. 9. As an additional check of our code, we can com-
pare the known frequencies of the fundamental mode and
its overtones for a (fermion-only) neutron star (as com-
puted either by using perturbation theory or numerical
evolutions, see for instance [30]) with the ones obtained
from our simulation for the purely fermionic case (corre-
sponding to the circles on the left in the bottom panel
of Fig. 9). The difference is always smaller than 1%,
confirming the accuracy and correctness of our results.

We now turn our attention to the boson-fermion case.
The fundamental mode, which is usually a function of
the mean density of the star, remains roughly constant
except for the largest boson fraction, for which it shifts
slightly towards smaller frequencies. The overtones, at
higher frequencies, display more interesting features. In
particular, there appears to be a splitting of these modes.
The original neutron star overtones, displayed with cir-
cles in Fig. 9, are the dominant ones for small number of
bosons. The power of the new oscillation modes increases
with the boson fraction, suggesting that their origin is
the gravitational coupling with the scalar field. The fre-
quency of the overtones has a significant drift towards
higher values as the fraction of bosons increases.

The main features of this spectrum can be qualitatively
explained in a very simple way. The new quasi-normal
modes, which were not present for isolated fermionic
stars, corresponds to the quasi-normal modes of the bo-
son star. The oscillations in the bosonic part propagate
to the fermions through gravity. As the fraction of bosons
increases, so does the relative importance of the scalar
field with respect to the fluid density, producing the ob-
served growth in the amplitude of these modes. Conse-
quently, the splitting effect is just a superposition of the
quasi-normal modes of the boson and the neutron star.
The drift in the frequencies is an effect of the change in
radius and mean-density of the star as the fraction of
boson changes.
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FIG. 9: Normal modes of the fermion-boson stars (Top)
Fourier spectrum of the central value of the fluid den-
sity ρ0 for several stable configuration with NB/NF =
{0, 2.5, 5, 7.5, 10}% andMT = 1.4. (Bottom) Frequencies cor-
responding to the first, second and third modes of the isolated
neutron star, as a function of the boson fraction. Notice the
appearance of new oscillation modes, not present for an iso-
lated neutron star. See the text for more details.

V. CONCLUDING REMARKS

We have studied in some detail the numerical evolu-
tion of equilibrium configurations of mixed boson-fermion
stars. Our results confirm the existence of stable and un-
stable branches of equilibrium configurations. We also
defined a stability criterion based on the variation of the
number of bosonic and fermionic particles, for a given
fixed value of the total mass, as a function of the central
values of the scalar field amplitude and the fluid density.
This criterion states that the equilibrium configurations
located on the left of the maximum (minimum) number
of bosons (fermions) are stable, whereas the configura-
tions located on the right are unstable. We were able
to determine the curve that separates the stable branch
from the unstable one, in the plane formed by the cen-
tral values of the scalar field φc and fluid density ρc. We
also verified that the correct solutions are obtained in the
limiting cases of an isolated boson or fermionic star, by
comparing with the results of previous studies.

In order to assess the stability criterion, we performed
the numerical evolution of the fully non-linear equations
of motion for two types of solutions. For the stable con-
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Branch NB/NF (%) φc ρc ωB RT NB RB RF

stable 0.0 0.0 1.27 × 10−3 0.0 9.10 0.0 0.0 8.55

stable 2.5 1.33 × 10−2 1.45 × 10−3 0.736 8.76 0.037 6.36 8.23

stable 5.0 2.06 × 10−2 1.67 × 10−3 0.718 8.39 0.073 5.96 7.88

stable 7.5 2.80 × 10−2 1.97 × 10−3 0.694 7.99 0.107 5.52 7.50

stable 10.0 3.63 × 10−2 2.42 × 10−3 0.661 7.49 0.141 5.02 7.08

unstable 10.7 5.90 × 10−2 5.05 × 10−3 0.533 6.22 0.147 3.60 5.82

TABLE I: Properties of the fermion-boson star models used in the simulations. All the stars have a total mass MT = 1.4.
The columns report: the fraction of boson particles, the central value of the scalar field φc, the central density ρc, the internal
frequency of the scalar field ωB , the total radius of the star RT , the number of bosonic particles NB , and the radius of the
bosonic and the fermionic components, RB and RF , respectively. Notice that the largest fraction of NB/NF for a stable
configuration is reached for the maximum value of NB and the minimum value of NF , but the precise value of the fraction
depends on the value of the total mass (in the present case we get NB/NF ≈ 13%); larger ratios NB/NF can be obtained for
smaller values of MT .

figuration, the central values of the scalar field and the
fermionic density remain constant in time during the nu-
merical evolution, while the unstable star migrates to a
stable configuration by ejecting out some of the initial
mass.
We also studied the structure of the normal modes and

overtones of these mixed stars by performing long term
numerical evolutions for configurations with a fixed to-
tal mass but with different boson to fermion ratios. As
expected, new oscillation modes appear in the frequency
spectrum of the stars, when compared to the fermion-
only case; the appearance of the new overtones is justi-
fied because of the gravitational coupling of the fermionic
perfect fluid with the scalar field, which has its own os-
cillation modes.
As we mentioned before, an accurate classification of

the properties of boson-fermion stars is necessary in order
to investigate the possible existence of bosons trapped in-
side, for instance, in neutron stars. One possible indica-
tion of such a phenomenon would be the frequency shifts
and splitting in the vibration spectrum of the stars.
Another case of astrophysical interest is the possible

existence of bosonic dark matter in galactic halos, an
idea that has drawn some attention in the specialized
literature in recent years [23, 31–41]. This type of mod-
els refers to the other extreme case, in which the star
is dominated by the bosonic component. In the context
of galaxies, these mixed fermion-boson stars could model
the galaxy halo with a boson star, and the gas with a
fermionic component. Our present results indicate that a
boson-dominated galaxy halo must keep its stability fea-
tures after the inclusion of fermions; however, more work
is needed to determine the properties of the equilibrium
configuration that may be detected through astrophysi-
cal observations. This is work in progress that we expect

to report elsewhere.
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DAIP-UG, CONACyT México under grant 167335, and
the Instituto Avanzado de Cosmologia (IAC) collabora-
tion. DA acknowledges support from the DFG grant
SFB/Transregio 7.

Appendix A: The evolution system of equations

We consider the Z3 formulation of the Einstein equa-
tions in spherical symmetry [23] as the evolution system
for the space-time geometry. The system is regularized
at the origin using the following transformation of the
momentum constraint:

Z̃r = Zr +
1

4r

(

1− grr
gθθ

)

,

which ensures the cross-cancellation of the factors 1/r
in the fluxes, and 1/r2 in the sources. The sources still
have terms like 1/r times other variables that contain ra-
dial derivatives of the metric coefficients. However, these
terms do not create problems at r → 0, as the radial
derivatives of any differentiable function must vanish at
the origin. Thus, the equations of motion read
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∂tAr = −∂r[α trK] , (A1a)

∂tDrr
r = −∂r[αKr

r] , (A1b)

∂tDrθ
θ = −∂r[αKθ

θ] , (A1c)

∂tZr = −∂r[2αKθ
θ] + 2α

{

(Kr
r −Kθ

θ)
(

Drθ
θ +

1

r

)

−Kr
r
[

Zr +
1

4r

(

1− grr
gθθ

)]

+ArKθ
θ +

1

4r

grr
gθθ

(Kθ
θ −Kr

r)− 4πSr

}

, (A1d)

∂tKr
r = −∂r

[

αgrr
(

Ar +
2

3
Drθ

θ − 4

3
Zr

)]

+ α
{

(Kr
r)2 +

2

3
Kθ

θ(Kr
r −Kθ

θ)

−grrDrr
rAr +

1

3r
[grr(Drr

r −Ar − 4Zr) + gθθ(Drθ
θ −Ar)]

+
2

3
grr

[

Zr +
1

4r

(

1− grr
gθθ

)]

(2Drr
r − 2Drθ

θ −Ar)

−2

3
grr

(

Drθ
θ +

1

r

)

(Drr
r −Ar) + 8π

(τ

6
− Sr

r

2
+ Sθ

θ
)}

, (A1e)

∂tKθ
θ = −∂r

[

αgrr
(

− 1

3
Drθ

θ +
2

3
Zr

)]

+ α
{1

3
Kθ

θ(−Kr
r + 4Kθ

θ)

+
1

6r
[grr(Ar − 2Drr

r − 4Zr) + gθθ(Ar − 2Drθ
θ)]

−2

3
grr

[

Zr +
1

4r

(

1− grr
gθθ

)]

(Drr
r −Drθ

θ − 2Ar)

+
1

3
grr

(

Drθ
θ +

1

r

)

(Drr
r − 4Ar) + 8π

(τ

6
− Sr

r

2
+ Sθ

θ
)}

, (A1f)

where Zr is the vector associated with the Z3 formula-
tion, and trK = Kr

r +2Kθ
θ is the trace of the extrinsic

curvature. In Sec. II we defined the matter terms of the
fermionic fluid {D, U , S̃r, S̃r

r, S̃θ
θ}, and the auxiliary

variables {Ar, Drr
r, Drθ

θ} which we introduced in order
to reduce the full system in Eqs. 9, 8, and A1, to first
order in space and time.
The total matter terms are given by

τ =
1

2
(grrφ∗tφt + grrφ∗rφr + V (φ)) + U , (A2a)

Sr = −1

2
[
√
grrφ∗tφr +

√
grrφtφ

∗

r ] + S̃r , (A2b)

Sr
r =

1

2
[grrφ∗tφt + grrφ∗rφr − V (φ)] + S̃r

r , (A2c)

Sθ
θ =

1

2
[grrφ∗tφt − grrφ∗rφr − V (φ)] + S̃θ

θ ,(A2d)

and the total mass of the mixed stars is calculated from
the Tolman mass defined as

MT =

∫

(T0
0 − Ti

i)
√−gdx3 , (A3)

= 4π

∫

r2α
√
grrgθθ(τ + Sr

r + 2Sθ
θ)dr .

On the other hand, the number of fermionic particles
associated to the mass of the fermionic fluid given by

NF = 4π

∫

r2α
√
grrgθθ(U + S̃r

r + 2S̃θ
θ)dr . (A4)

The number of bosonic particles can be associated to
the Noether charge [1] of the scalar field, which can be
computed as

NB = 4π

∫

r2
√
grrgθθ(φ

∗∂tφ− φ∂tφ
∗)/

√
grrdr . (A5)

The Hamiltonian constraint takes the form

H =
2

grr

{

− 2∂iDrθ
θ − 3Drθ

θ
(

Drθ
θ +

2

r

)

+grrKθ
θ(Kθ

θ + 2Kr
r)− (1− grrg

θθ)

r2

+2Drr
r
(1

r
+Drθ

θ
)

− 8πgrrτ
}

. (A6)

Appendix B: The transformation from conserved to

primitive quantities

From the definition of the conserved quantities

D = ρ0W , U = hW 2 − P , S̃r = hW 2vr , (B1)

one obtains the primitives {ρ , P , vr , ǫ} after each time
integration of the equations of motion. This is not trivial,
mainly because the enthalpy h = ρ(1 + ǫ) + P , and the
Lorentz factor W = 1/

√
1− vrvr, are defined as func-

tions of the primitives.
We are adopting a recovery procedure which consists

in the following steps:
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1. From the first thermodynamics law for adiabatic
processes, it follows that

P = (Γ− 1)ρǫ . (B2)

Substituting the definition of the entalphy in the
equation of state above, we write the pressure as
a function of the conserved quantities and the un-
known variable x = hW 2.

2. Using the previous step, the definition of U be-
comes:

U = hW 2 − P

= hW 2 − (Γ− 1)

Γ
(h− ρ)

= hW 2
(

1− Γ− 1

Γ

)

+
Γ− 1

Γ
ρ , (B3)

where Γ is the adiabatic index corresponding to an
ideal gas.

3. Then, the function

f(x) =

(

1− Γ− 1

W 2Γ

)

x+
D(Γ− 1)

WΓ
− U, (B4)

must vanish for the physical solutions. The roots
of the function f(x) = 0 can be found numerically
by means of an iterative Newton-Raphson solver,
so that the solution at the n + 1-iteration can be
computed as

xn+1 = xn − f(xn)

f ′(xn)
, (B5)

where f ′(xn) is the derivative of the function f(xn).
The initial guess for the unknown x is given in the
previous time step.

4. After each step of the Newton-Raphson solver, we
update the values of the fluid primitives as

ρ = D/W , P = x− U , vr = S̃r/x , (B6)

where W 2 = x2/(x2 − S̃rS̃r).

5. Iterate steps 3 and 4 until the difference between
two successive values of x falls below a given thresh-
old value of the order of 10−10.
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