36 research outputs found

    Long-distance structure of the X(3872)

    Get PDF
    We investigate heavy quark symmetries for heavy meson hadronic molecules, and explore the consequences of assuming the X(3872) and Zb(10610)Z_b(10610) as an isoscalar DDˉ∗D\bar D^* and an isovector BBˉ∗B\bar B^* hadronic molecules, respectively. The symmetry allows to predict new hadronic molecules, in particular we find an isoscalar 1++1^{++} BBˉ∗B\bar B^* bound state with a mass about 10580 MeV and the isovector charmonium partners of the Zb(10610)Z_b(10610) and the Zb(10650)Z_b(10650) states. Next, we study the X(3872)→D0Dˉ0π0X(3872) \to D^0 \bar D^0\pi^0 three body decay. This decay mode is more sensitive to the long-distance structure of the X(3872) resonance than its J/ψππJ/\psi\pi\pi and J/ψ3πJ/\psi3\pi decays, which are mainly controlled by the short distance part of the X(3872) molecular wave function. We discuss the D0Dˉ0D^0 \bar D^0 final state interactions, which in some situations become quite important. Indeed in these cases, a precise measurement of this partial decay width could provide precise information on the interaction strength between the D(∗)Dˉ(∗)D^{(*)}\bar D^{(*)} charm mesons.Comment: Talk presented at the "XI International Conference on Hyperons, Charm and Beauty Hadrons (BEACH 2014)", Birmingham (U.K.), July 201

    Are there three Xi(1950) states?

    Full text link
    Different experiments on hadron spectroscopy have long suspected the existence of several cascade states in the 1900−2000MeV1900-2000 {\rm MeV} region. They are usually labeled under the common name of Ξ(1950)\Xi (1950). As we argue here, there are also theoretical reasons supporting the idea of several Ξ(1950)\Xi (1950) resonances. In particular, we propose the existence of three Ξ(1950)\Xi(1950) states: one of these states would be part of a spin-parity (1/2)−(1/2)^{-} decuplet and the other two probably would belong to the (5/2)+(5/2)^{+} and (5/2)−(5/2)^{-} octets. We also identify which decay channels are the more appropriate for the detection of each of the previous states.Comment: 5 pages, 3 tables, final version. Published in Phys. Rev. D 85, 017502 (2012

    Renormalization of chiral two pion exchange NN interactions with delta excitations: correlations in the partial wave expansion

    Get PDF
    In this work we consider the renormalization of the chiral two-pion exchange potential with explicit delta-excitations for nucleon-nucleon scattering at next-to-leading (NLO) and next-to-next-to-leading order (N2LO). Due to the singular nature of the chiral potentials, correlations between different partial waves are generated. In particular we show that two-body scattering by a short distance power like singular attractive interaction can be renormalized in all partial waves with a single counterterm, provided the singularities are identical. A parallel statement holds in the presence of tensor interactions when the eigenpotentials in the coupled channel problem also coincide. While this construction reduces the total number of counterterms to eleven in the case of nucleon-nucleon scattering with chiral two-pion exchange interactions with delta degrees of freedom, the differences in the scattering phases as compared to the case with the uncorrelated partial wave renormalization become smaller as the angular momentum is increased in the elastic scattering region.Comment: 20 pages, 8 figures, a section has been added discussing cut-off dependence. Accepted for publication in PR

    Renormalization of NN Interaction with Relativistic Chiral Two Pion Exchange

    Full text link
    The renormalization of the NN interaction with the Chiral Two Pion Exchange Potential computed using relativistic baryon chiral perturbation theory is considered. The short distance singularity reduces the number of counter-terms to about a half as those in the heavy-baryon expansion. Phase shifts and deuteron properties are evaluated and a general overall agreement is observed.Comment: 13 pages, 4 figures. Reference included. Typos corrected. Appendix and discussion adde
    corecore