18 research outputs found

    Inventário bibliográfico de granitos do Estado de São Paulo

    Get PDF

    Rare earth element and yttrium geochemistry applied to the genetic study of cryolite ore at the Pitinga Mine (Amazon, Brazil)

    Get PDF
    This work aims at the geochemical study of Pitinga cryolite mineralization through REE and Y analyses in disseminated and massive cryolite ore deposits, as well as in fluorite occurrences. REE signatures in fluorite and cryolite are similar to those in the Madeira albite granite. The highest ΣREE values are found in magmatic cryolite (677 to 1345 ppm); ΣREE is lower in massive cryolite. Average values for the different cryolite types are 10.3 ppm, 6.66 ppm and 8.38 ppm (for nucleated, caramel and white types, respectively). Disseminated fluorite displays higher ΣREE values (1708 and 1526ppm) than fluorite in late veins(34.81ppm). Yttrium concentration is higher in disseminated fluorite and in magmatic cryolite. The evolution of several parameters (REEtotal, LREE/HREE, Y) was followed throughout successive stages of evolution in albite granites and associated mineralization. At the end of the process, late cryolite was formed with low REEtotal content. REE data indicate that the MCD was formed by, and the disseminated ore enriched by (additional formation of hydrothermal disseminated cryolite), hydrothermal fluids, residual from albite granite. The presence of tetrads is poorly defined, although nucleated, caramel and white cryolite types show evidence for tetrad effect.Este trabalho enfoca a geoquímica de elementos terras raras (ETR) e de Y no minério criolítico disseminado, no depósito criolítico maciço e na fluorita associada na mina Pitinga. As assinaturas de ETR na criolita e fluorita são similares àquelas do granito Madeira. Os maiores valores de SETR são encontrados na criolita magmática disseminada (677 a 1.345 ppm); SETR é menor na criolita maciça, com valores médios de 10,3 ppm, 6,66 ppm e 8,38 ppm, respectivamente, nos tipos de criolita nucleada, caramelo e branca. A fluorita magmática disseminada apresenta os valores mais altos de SETR (1.708 e 1.526 ppm), contrastando com a fluorita de veio tardio(34,81 ppm). A concentração de Y é maior na fluorita disseminada e na criolita magmática. As evoluções de diversos parâmetros (SETR, ETRL/ETRP, Y) podem ser seguidas através dos sucessivos estágios de evolução dos albita granitos e mineralização associada. Os dados de ETR indicam que o depósito criolítico maciço foi formado por, e o minério disseminado enriquecido por (formação adicional criolita disseminada hidrotermal), fluidos hidrotermais residuais do albita granito. A presença do efeito tetrad não é bem definida, embora as criolitas maciças nucleada, caramelo e branca apresentem algumas evidências deste efeito.FINEPAgência para o Desenvolvimento da Indústria Mineral do BrasilConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) - Departamento Nacional de Produção MineralFundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) - Programa de Apoio a Núcleos de ExcelênciaCNP

    The inventory of geological heritage of the state of São Paulo, Brazil: Methodological basis, results and perspectives

    Get PDF
    An inventory of geological sites based on solid and clear criteria is a first step for any geoconservation strategy. This paper describes the method used in the geoheritage inventory of the State of São Paulo, Brazil, and presents its main results. This inventory developed by the geoscientific community aimed to identify geosites with scientific value in the whole state, using a systematic approach. All 142 geosites representative of 11 geological frameworks were characterised and quantitatively evaluated according to their scientific value and risk of degradation, in order to establish priorities for their future management. An online database of the inventory is under construction, which will be available to be easily consulted and updated by the geoscientific community. All data were made available to the State Geological Institute as the backbone for the implementation of a future state geoconservation strategy.The authors acknowledge the Science Without Borders Programme, Process 075/2012, which supported this study and the São Paulo Research Foundation (FAPESP), Process 2011/17261-6. We also thanks C. Mazoca for his help with maps and figures.info:eu-repo/semantics/acceptedVersio

    Contamination in mafic mineral-rich calc-alkaline granites: a geochemical and Sr-Nd isotope study of the Neoproterozoic Piedade Granite, SE Brazil

    No full text
    The Piedade Granite (~600 Ma) was emplaced shortly after the main phase of granite magmatism in the Agudos Grandes batholith, Apiaí-Guaxupé Terrane, SE Brazil. Its main units are: mafic mineral-rich porphyritic granites forming the border (peraluminous muscovite-biotite granodiorite-monzogranite MBmg unit) and core (metaluminous titanite-bearing biotite monzogranite BmgT unit) and felsic pink inequigranular granite (Bmg unit) between them. Bmg has high LaN/YbN (up to 100), Th/U (>10) and low Rb, Nb and Ta, and can be a crustal melt derived from deep-seated sources with residual garnet and biotite. The core BmgT unit derived from oxidized magmas with high Mg# (~45), Ba and Sr, fractionated REE patterns (LaN/YbN= 45), 87Sr/86Sr(t)~ 0.710, epsilonNd(t) ~ -12 to -14, interpreted as being high-K calc-alkaline magmas contaminated with metasedimentary rocks that had upper-crust signature (high U, Cs, Ta). The mafic-rich peraluminous granites show a more evolved isotope signature (87Sr/86Sr(t) = 0.713-0.714; epsilonNd(t)= -14 to -16), similar to Bmg, and Mg# and incompatible trace-element concentrations intermediate between Bmg and BmgT. A model is presented in whichMBmgis envisaged as the product of contamination between a mafic mineral-rich magma consanguineous with BmgT and pure crustal melts akin to Bmg

    Rapid eruption of silicic magmas from the Paraná magmatic province (Brazil) did not trigger the Valanginian event

    Get PDF
    The Valanginian Stage is marked by a period of global positive δ13C carbon cycle perturba-tion and biotic crises, which are collectively referred to as the Valanginian event (VE). Many attempts have been made to link the Paraná-Etendeka large igneous province volcanism with the VE. However, currently there is no conclusive proof to support this hypothesis, since the timing and duration of the volcanic activity are not known with suf cient precision. In this study, we signi cantly revise the time scales of magmatism and environmental impact of the Paraná magmatic province (PMP) in Brazil with new high-precision zircon U-Pb ages from the low-Ti Palmas and high-Ti Chapecó sequences. Our data demonstrate that signi - cant volumes of low-Ti silicic rocks from the PMP erupted rapidly at ca. 133.6 Ma within 0.12 ± 0.11 k.y. The age of the high-Ti Chapecó sequence from central PMP is constrained at ca. 132.9 Ma and thus extends the duration of magmatic activity by ∼700 k.y. Our new ages are systematically younger than previous ages and postdate the major positive carbon isotope excursion, indicating that PMP silicic magmatism did not trigger the VE but could have contributed to extending its duration. Within the framework of the stratigraphic column of the PMP, the earliest low-Ti basalts could have been responsible for the VE if they are at least 0.5 m.y. older than the low-Ti silicic rocks dated herein

    The distribution of platinum-group elements and Te, As, Bi, Sb and Se (TABS+) in the Paraná Magmatic Province : effects of crystal fractionation, sulfide segregation and magma degassing

    No full text
    The concentrations of Te, As, Bi, Sb and Se (TABS+) in magmas from large igneous provinces (LIPs) are of interest because these elements are important in the formation of platinum-group minerals (PGM) found in magmatic Nisingle bondCu platinum-group element (PGE) deposits. Furthermore, the TABS+ are volatile and hence they may be lost in degassing and have a role to play in the mass extinctions associated with LIPs events because these are mostly toxic elements. However, the concentrations of TABS+ in magmas from LIPs are not well documented due in part to the analytical difficulties and in part to the numerous processes that affect their distribution. We have determined the concentration of TABS+ and PGE in rocks from the Paraná Magmatic Province (PMP) in order to assess the effects of fractional crystallization, sulfide segregation and magma degassing. Decrease in the Rh, Ru and Ir concentrations with Mg and Cr indicate that these elements behaved as compatible elements during crystal fractionation. Based on changes in the Cu/Pd sulfide saturation occurred in some cases resulting into a decrease in Pd and Pt. Arsenic and Sb behave as incompatible elements, whereas Se, Te and Bi show variable behaviour. Most lavas from the PMP display negative As, Se and Te anomalies on mantle-normalized patters coupled with Te/Cu, Se/Cu and As/Th and Sb/Th ratios lower than mantle values, which we attribute to loss of the TABS+ during degassing
    corecore