73 research outputs found

    Effects of Benzo(a)pyrene on the endometrial receptivity and embryo implantation in mice: An experimental study

    Get PDF
    Background: Benzo(a)pyrene (BaP) as an environmental pollutant is ubiquitous in the environment and it has destructive effects on human health. So far, various studies have demonstrated that BaP can cause adverse effects on the female reproductive system, but the existing information is limited about the effects of BaP on the endometrial receptivity and embryo implantation. Objective: The aim of this study was to investigate the effects of BaP on the endometrial receptivity and implantation in mice. Materials and Methods: In this experimental study, 40 pregnant BALB/c mice were divided into 5 groups (n = 8/each) as follows: experimental groups received the doses of 100 μg/kg, 200 μg/kg, and 500 μg/kg BaP dissolved in corn oil, the control group received normal saline and sham group received corn oil. Pregnant mice administered these solutions from Day 1 to Day 5 of gestation by gavage. On Day 6, the mice were sacrificed. Then their embryos were counted and the hormonal, histomorphological and molecular analyses were performed on themocusa of uterine tube. Results: The data revealed that BaP reduces estrogen and progesterone levels, decreases the number of implantation site, endometrium thickness, uterine lumen diameter, stromal cells and endometrial glands, and blood vessels in the endometrium. However, the expression of Activin receptor-like kinase 5 and E cadherin genes was not changed by BaP with different doses. Conclusion: The finding of this study showed that BaP can change estrogen and progesterone levels, and endometrial morphology leads to impairing the endometrial receptivity and decreasing the number of implantation site. Key words: Benzo(a)pyrene, Embryo implantation, Estrogen, Progesterone, ALK5, E-cadherin

    Designing a potent L1 protein-based HPV peptide vaccine : a bioinformatics approach

    Get PDF
    Background: Oncogenic human papilloma viruses (HPV) are the cause of various types of cancer, specifically cervical cancer. L1 protein is the main protein of HPV capsid which targeted in many vaccine-producing attempts. However, they have not enough coverage on the various high risk HPV types. Therefore, having a low cost potent HPV vaccine to protect against all members of the ɑ-papillomaviridea family will be promising. In this study, L1 protein-based peptide vaccine was designed using immunoinformatics methods which provides physicochemical properties such as stability in room temperature, potential of antigenicity, non-allergic properties and no requirement with eukaryotic host system. Results: The designed vaccine has two HPV conserved epitopes with lengths 18 and 27 amino acids in all members of α-papillomaviridea. These peptides promote humoral and cellular immunity and INF-γ responses. In order to ensure strong induction of immune responses, Flagellin, a Toll like receptor 5(TLR-5) agonist, and a short synthetic toll like receptor 4 (TLR-4) agonist were also joined to the epitopes. Structure of the designed- vaccine was validated using Rampage and ERRAT and a high quality 3D structure of the vaccine protein was provided. Docking studies demonstrated an appropriate and stable interaction between the vaccine and TLR-5. Conclusions: The vaccine is expected to have a high quality structure and suitable properties including high stability, solubility and a high potential to be expressed in 'E.coli'. High potentiality of the vaccine in inducing humoral and cellular immune responses, may be considered as an anti-tumor vaccine

    Emergence of Terbinafine Resistant Trichophyton mentagrophytes in Iran, Harboring Mutations in the Squalene Epoxidase (SQLE) Gene

    Get PDF
    Introduction: Trichophyton mentagrophytes and T. interdigitale are important causative agents of superficial mycoses, demonstrating emergent antifungal drug resistance. We studied the antifungal susceptibility profiles in Iranian isolates of these two species. Methods: A total of 96 T. interdigitale and 45 T. mentagrophytes isolates were subjected to molecular typing by ribosomal ITS region. Antifungal susceptibility profiles for terbinafine, griseofulvin, clotrimazole, efinaconazole, luliconazole, amorolfine and ciclopirox were obtained by CLSI broth microdilution method. The squalene epoxidase (SQLE) gene was subjected to sequencing for mutations, if any, in isolates exhibiting elevated MICs for terbinafine. Results: Luliconazole and efinaconazole showed the lowest MIC values against T. mentagrophytes and T. interdigitale isolates. There were five isolates with terbinafine MICs >= 32 mu g/mL in our sample. They belonged to T. mentagrophytes type VIII and harbored two alternative SQLE gene sequence variants, leading to Phe397Leu and Ala448Thr or Leu393Ser and Ala448Thr substitutions in the enzyme. All terbinafine resistant strains could be inhibited by luliconazole and efinaconazole. Conclusion: This study documented a step in the global spread of resistance mechanisms in T. mentagrophytes. However, treatment alternatives for resistant isolates were available. Keywords:Trichophyton mentagrophytes; SQLE; terbinafine; antifungal drug resistance; Ira

    Evaluation of mRNA Expressions of TOX and NR4As in CD8+ T cells in Acute Leukemia

    Get PDF
    Background: Thymocyte selection-associated high mobility group box protein (TOX) and members of the nuclear receptor 4A (NR4A) are known as transcription factors involved in T cell exhaustion.Objective: To evaluate the mRNA expression of TOX and NR4A1-3 in CD8+ T cells in acute leukemia.Methods: Blood samples were obtained from 21 ALL and 6 AML patients as well as 20 control subjects. CD8+ T cells were isolated using MACS. Relative gene expression of TOX and NR4A1-3 was then evaluated using qRT-PCR.Results: Comparison of mRNA expression of TOX in CD8+ T cells showed no significant difference among the study groups (p>0.05), while the expression of NR4A1 was significantly lower in AML patients than in the control group (p=0.0006). Also, the expression of NR4A2 and NR4A3 was significantly lower in both ALL (p=0.0049 and p=0.0005, respectively) and AML (p=0.0019 and p=0.0055, respectively) patients.Conclusion: NR4As expressions were found to be lower in CD8+ T cells from patients with AML and ALL compared to controls, whereas the mRNA expression of TOX showed no significant difference. Although TOX and NR4As are associated with CD8+ T cell exhaustion in solid tumors, they might play different roles in acute leukemia, which requires further investigation

    Enhancement of immune responses by vaccine potential of three antigens, including ROP18, MIC4, and SAG1 against acute toxoplasmosis in mice

    Get PDF
    Toxoplasma gondii (T. gondii) causes considerable financial losses in the livestock industry and can present serious threats to pregnant women, as well as immunocompromised patients. Therefore, it is required to design and produce an efficient vaccine for controlling toxoplasmosis. The present study aimed to evaluate the protective immunity induced by RMS protein (ROP18, MIC4, and SAG1) with Freund adjuvant, calcium phosphate nanoparticles (CaPNs), and chitosan nanoparticles (CNs) in BALB/c mice. The RMS protein was expressed in Escherichia coli (E. coli) and purified using a HisTrap HP column. Thereafter, cellular and humoral immunity was assessed by injecting RMS protein on days 0, 21, and 35 into four groups [RMS, RMS-chitosan nanoparticles (RMS-CNs), RMS-calcium phosphate nanoparticles (RMS-CaPNs), and RMS-Freund]. Phosphate buffered saline (PBS), CNs, CaPNs, and Freund served as the four control groups. The results displayed that vaccination with RMS protein and adjuvants significantly elicited the levels of specific IgG antibodies and cytokines against toxoplasmosis. There were high levels of total IgG, IgG2a, and IFN-γ in vaccinated mice, compared to those in the control groups, especially in the RMS-Freund, indicating a Th-1 type response. The vaccinated and control mice were challenged intraperitoneally with 1 × 103 tachyzoites of the T. gondii RH strain four weeks after the last injection, and in RMS-Freund and RMS-CaPNs groups, the highest increase in survival time was observed (15 days). The RMS can significantly increase Th1 and Th2 responses; moreover, multi-epitope vaccines with adjuvants can be a promising strategy for the production of a vaccine against toxoplasmosis

    Status of insecticide resistance and its biochemical and molecular mechanisms in Anopheles stephensi (Diptera: Culicidae) from Afghanistan

    Get PDF
    Background Insecticide resistance of Anopheles stephensi, the main malaria vector in eastern Afghanistan, has been reported previously. This study describes the biochemical and molecular mechanisms of resistance to facilitate effective vector control and insecticide resistance management. Methods Mosquito larvae were collected from the provinces of Kunar, Laghman and Nangarhar from 2014 to 2017. The susceptibility of the reared 3–4 days old adults was tested with deltamethrin 0.05%, bendiocarb 0.1%, malathion 5%, permethrin 0.75% and DDT 4%. Cytochrome P450 content and general esterase, glutathione S-transferase (GST) and acetylcholinesterase (AChE) activities were measured in the three field populations and the results were compared with those of the laboratory susceptible An. stephensi Beech strain. Two separate allele-specific PCR assays were used to identify L1014, L1014F and L1014S mutations in the voltage gated sodium channel gene of An. stephensi. Probit analysis, ANOVA and Hardy–Weinberg equilibrium were used to analyse bioassay, biochemical assay and gene frequency data respectively. Results The population of An. stephensi from Kunar was susceptible to bendiocarb, apart from this, all populations were resistant to all the other insecticides tested. The differences between all values for cytochrome P450s, general esterases, GSTs and AChE inhibition rates in the Kunar, Laghman and Nangarhar populations were statistically significant when compared to the Beech strain, excluding GST activities between Kunar and Beech due to the high standard deviation in Kunar. The three different sodium channel alleles [L1014 (wild type), L1014F (kdr west) and L1014S (kdr east)] were all segregated in the Afghan populations. The frequencies of kdr east mutation were 22.9%, 32.7% and 35% in Kunar, Laghman and Nangarhar populations respectively. Kdr west was at the lowest frequency of 4.44%. Conclusions Resistance to different groups of insecticides in the field populations of An. stephensi from Kunar, Laghman and Nangarhar Provinces of Afghanistan is caused by a range of metabolic and site insensitivity mechanisms, including esterases, cytochrome P450s and GSTs combined with AChE and sodium channel target site insensitivity. The intensity and frequency of these mechanisms are increasing in these populations, calling for urgent reorientation of vector control programmes and implementation of insecticide resistance management strategies.d

    Kdr genotyping and the first report of V410L and V1016I kdr mutations in voltage-gated sodium channel gene in Aedes aegypti (Diptera: Culicidae) from Iran

    Get PDF
    Background: Aedes aegypti is the main vector of arboviral diseases worldwide. The species invaded and became established in southern Iran in 2020. Insecticide-based interventions are primarily used for its control. With insecticide resistance widespread, knowledge of resistance mechanisms is vital for informed deployment of insecticidal interventions, but information from Iranian Ae. aegypti is lacking. Methods: Fifty-six Ae. aegypti specimens were collected from the port city of Bandar Lengeh in Hormozgan Province in the South of Iran in 2020 and screened for kdr mutations. The most common kdr mutations in Latin America and Asia (V410L, S989P, V1016G/I and F1534C), especially when present in combinations, are highly predictive of DDT and pyrethroid resistance were detected. Phylogenetic analyses based on the diversity of S989P and V1016G/I mutations were undertaken to assess the phylogeography of these kdr mutations. Results: Genotyping all four kdr positions of V410L, S989P, V1016G/I and F1534C revealed that only 16 out of the 56 (28.57%) specimens were homozygous wild type for all kdr mutation sites. Six haplotypes including VSVF (0.537), VSVC (0.107), LSVF (0.016), LSIF (0.071), VPGC (0.257) and LPGC (0.011) were detected in this study. For the first time, 11 specimens harbouring the V410L mutation, and 8 samples with V1016I mutation were found. V410L and V1016I were coincided in 8 specimens. Also, six specimens contained 1016G/I double mutation which was not reported before. Conclusions: The relatively high frequency of these kdr mutations in Iranian Ae. aegypti indicates a population exhibiting substantial resistance to pyrethroid insecticides, which are used widely in control operations and household formulations. The detection of the 410L/1016I kdr mutant haplotype in Iranian Ae. aegypti suggests possible convergence of invasive populations from West Africa or Latin America. However, as Iran has very limited maritime/air connections with those African countries, a Latin American origin for the invasive Ae. aegypti in Iran is more plausible

    IFI27 transcription is an early predictor for COVID-19 outcomes, a multi-cohort observational study

    Get PDF
    PurposeRobust biomarkers that predict disease outcomes amongst COVID-19 patients are necessary for both patient triage and resource prioritisation. Numerous candidate biomarkers have been proposed for COVID-19. However, at present, there is no consensus on the best diagnostic approach to predict outcomes in infected patients. Moreover, it is not clear whether such tools would apply to other potentially pandemic pathogens and therefore of use as stockpile for future pandemic preparedness.MethodsWe conducted a multi-cohort observational study to investigate the biology and the prognostic role of interferon alpha-inducible protein 27 (IFI27) in COVID-19 patients.ResultsWe show that IFI27 is expressed in the respiratory tract of COVID-19 patients and elevated IFI27 expression in the lower respiratory tract is associated with the presence of a high viral load. We further demonstrate that the systemic host response, as measured by blood IFI27 expression, is associated with COVID-19 infection. For clinical outcome prediction (e.g., respiratory failure), IFI27 expression displays a high sensitivity (0.95) and specificity (0.83), outperforming other known predictors of COVID-19 outcomes. Furthermore, IFI27 is upregulated in the blood of infected patients in response to other respiratory viruses. For example, in the pandemic H1N1/09 influenza virus infection, IFI27-like genes were highly upregulated in the blood samples of severely infected patients.ConclusionThese data suggest that prognostic biomarkers targeting the family of IFI27 genes could potentially supplement conventional diagnostic tools in future virus pandemics, independent of whether such pandemics are caused by a coronavirus, an influenza virus or another as yet-to-be discovered respiratory virus
    • …
    corecore