192 research outputs found

    Soft Mode Anomalies in the Perovskite Relaxor Pb(Mg1/3Nb2/3)O3

    Full text link
    Neutron inelastic scattering measurements of the polar TO phonon mode in the cubic relaxor Pb(Mg1/3Nb2/3)O3, at room temperature, reveal anomalous behavior similar to that recently observed in the Pb(Zn1/3Nb2/3)_{0.92}Ti_{0.08}O3 system in which the optic branch appears to drop precipitously into the acoustic branch at a finite value of the momentum transfer q = 0.20 1/Angstroms, measured from the zone center. By contrast, a recent neutron study showed that PMN exhibits a normal TO phonon dispersion at 800 K. We speculate this behavior is common to all relaxor materials and is the result of the presence of nanometer-scale polarized domains in the crystal that form below a temperature Td, which effectively prevent the propagation of long wavelength (q = 0) phonons.Comment: 5 pages, 4 figures To appear as an AIP Conference Proceedings Volume for the Aspen 2000 Winter Conference on the Fundamental Physics of Ferroelectric

    Interplay between static and dynamic polar correlations in relaxor Pb(Mg_{1/3}Nb_{2/3})O_{3}

    Full text link
    We have characterized the dynamics of the polar nanoregions in Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_{3} (PMN) through high-resolution neutron backscattering and spin-echo measurements of the diffuse scattering cross section. We find that the diffuse scattering intensity consists of \emph{both} static and dynamic components. The static component first appears at the Curie temperature Θ400\Theta \sim 400 K, while the dynamic component freezes completely at the temperature Tf200_{f} \sim 200 K; together, these components account for all of the observed spectral weight contributing to the diffuse scattering cross section. The integrated intensity of the dynamic component peaks near the temperature at which the frequency-dependent dielectric constant reaches a maximum (Tmax_{max}) when measured at 1 GHz, i. e. on a timescale of 1\sim 1 ns. Our neutron scattering results can thus be directly related to dielectric and infra-red measurements of the polar nanoregions. Finally, the global temperature dependence of the diffuse scattering can be understood in terms of just two temperature scales, which is consistent with random field models.Comment: (8 pages, 5 figures, submitted to Phys. Rev. B

    Coexistence and competition of local- and long-range polar orders in a ferroelectric relaxor

    Full text link
    We have performed a series of neutron diffuse scattering measurements on a single crystal of the solid solution Pb(Zn1/3_{1/3}Nb2/3_{2/3})O3_3 (PZN) doped with 8% PbTiO3_3 (PT), a relaxor compound with a Curie temperature TC450_C \sim 450 K, in an effort to study the change in local polar orders from the polar nanoregions (PNR) when the material enters the ferroelectric phase. The diffuse scattering intensity increases monotonically upon cooling in zero field, while the rate of increase varies dramatically around different Bragg peaks. These results can be explained by assuming that corresponding changes occur in the ratio of the optic and acoustic components of the atomic displacements within the PNR. Cooling in the presence of a modest electric field E\vec{E} oriented along the [111] direction alters the shape of diffuse scattering in reciprocal space, but does not eliminate the scattering as would be expected in the case of a classic ferroelectric material. This suggests that a field-induced redistribution of the PNR has taken place

    Two-step phase changes in cubic relaxor ferroelectrics

    Full text link
    The field-driven conversion between the zero-field-cooled frozen relaxor state and a ferroelectric state of several cubic relaxors is found to occur in at least two distinct steps, after a period of creep, as a function of time. The relaxation of this state back to a relaxor state under warming in zero field also occurs via two or more sharp steps, in contrast to a one-step relaxation of the ferroelectric state formed by field-cooling. An intermediate state can be trapped by interrupting the polarization. Giant pyroelectric noise appears in some of the non-equilibrium regimes. It is suggested that two coupled types of order, one ferroelectric and the other glassy, may be required to account for these data.Comment: 27 pages with 8 figures to appear in Phys. Rev.

    Soft Mode Dynamics Above and Below the Burns Temperature in the Relaxor Pb(Mg_1/3Nb_2/3)O_3

    Full text link
    We report neutron inelastic scattering measurements of the lowest-energy transverse optic (TO) phonon branch in the relaxor Pb(Mg_1/3Nb_2/3)O_3 from 400 to 1100 K. Far above the Burns temperature T_d ~ 620 K we observe well-defined propagating TO modes at all wave vectors q, and a zone center TO mode that softens in a manner consistent with that of a ferroelectric soft mode. Below T_d the zone center TO mode is overdamped. This damping extends up to, but not above, the waterfall wave vector q_wf, which is a measure of the average size of the PNR.Comment: 4 pages, 4 figures; modified discussion of Fig. 3, shortened captions, added reference, corrected typos, accepted by Phys. Rev. Let

    Direct evidence of soft mode behavior near the Burns' temperature in PbMg1/3_{1 / 3}Nb2/3_{2 / 3}O3_{3} (PMN) relaxor ferroectric

    Full text link
    Inelastic neutron scattering measurements of the relaxor ferroelectric PbMg1/3_{1 / 3}Nb2/3_{2 / 3}O3_{3} (PMN) in the temperature range 490~K<<T<<880~K directly observe the soft mode (SM) associated with the Curie-Weiss behavior of the dielectric constant ε\varepsilon (T). The results are treated within the framework of the coupled SM and transverse optic (TO1) mode and the temperature dependence of the SM frequency at q=0.075 a* is determined. The parameters of the SM are consistent with the earlier estimates and the frequency exhibits a minimum near the Burns temperature (\approx 650K)Comment: 6 figure

    Neutron scattering study of PbMg1/3_{1/3}Ta2/3_{2/3}O3_3 and BaMg1/3_{1/3}Ta2/3_{2/3}O3_3 complex perovskites

    Full text link
    Neutron scattering investigations were carried out in PbMg1/3_{1/3}Ta2/3_{2/3}O3_3 and BaMg1/3_{1/3}Ta2/3_{2/3}O3_3 complex perovskites. The crystal structure of both compounds does not show any phase transition in the temperature range 1.5 -- 730 K. Whereas the temperature dependence of the lattice parameter of BaMg1/3_{1/3}Ta2/3_{2/3}O3_3 follows the classical expectations, the lattice parameter of relaxor ferroelectric PbMg1/3_{1/3}Ta2/3_{2/3}O3_3 exhibits anomalies. One of these anomalies is observed in the same temperature range as the peak in the dielectric susceptibility. We find that in PbMg1/3_{1/3}Ta2/3_{2/3}O3_3, lead ions are displaced from the ideal positions in the perovskite structure at all temperatures. Consequently short-range order is present. This induces strong diffuse scattering with an anisotropic shape in wavevector space. The temperature dependences of the diffuse neutron scattering intensity and of the amplitude of the lead displacements are similar

    Temperature independent diffuse scattering and elastic lattice deformations in relaxor PbMg1/3Nb2/3O3

    Full text link
    The results of diffuse neutron scattering experiment on PbMg1/3Nb2/3O3 single crystal above the Burns temperature are reported. It is shown that the high temperature elastic diffuse component is highly anisotropic in low-symmetry Brillouin zones and this anisotropy can be described using Huang scattering formalism assuming that the scattering originates from mesoscopic lattice deformations due to elastic defects. The qualitative agreement between this model and the experimental data is achieved with simple isotropic defects. It is demonstrated that weak satellite maxima near the Bragg reflections can be interpreted as the finite resolution effect.Comment: 7 pages, 7 figure
    corecore